$x^{8} + 2 a_{6} x^{6} + \left(2 b_{4} + 4 c_{12}\right) x^{4} + 4 b_{11} x^{3} + 4 a_{9} x + 4 c_{8} + 2$ |
Indices of inseparability: | $[9,6,4,0]$ (show 4), $[9,6,6,0]$ (show 6) |
Associated inertia: | $[2,1]$ (show 6), $[3,1]$ (show 4) |
Jump Set: | $[1,2,7,15]$ (show 4), $[1,3,6,16]$ (show 3), $[1,3,9,17]$ (show 3) |
Select desired size of Galois group.
| | Galois groups of order 16 |
|
|
$\SD_{16}$ (as 8T8) |
hidden slopes
|
$[\ ]^{2}$ |
2 |
|
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.8.16c1.1 |
4 |
$x^{8} + 2 x^{6} + 4 x + 2$ |
$C_4\wr C_2$ (as 8T17) |
$32$ |
$4$ |
$[2, 2, \frac{5}{2}]^{4}$ |
$[1,1,\frac{3}{2}]^{4}$ |
$[\ ]^{4}$ |
$[\ ]^{4}$ |
$[9, 6, 6, 0]$ |
$[2, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 9, 17]$ |
2.1.8.16c1.2 |
4 |
$x^{8} + 2 x^{6} + 4 x^{4} + 4 x + 2$ |
$C_4\wr C_2$ (as 8T17) |
$32$ |
$4$ |
$[2, 2, \frac{5}{2}]^{4}$ |
$[1,1,\frac{3}{2}]^{4}$ |
$[\ ]^{4}$ |
$[\ ]^{4}$ |
$[9, 6, 6, 0]$ |
$[2, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 9, 17]$ |
2.1.8.16c1.3 |
2 |
$x^{8} + 2 x^{6} + 4 x^{3} + 4 x + 2$ |
$QD_{16}$ (as 8T8) |
$16$ |
$2$ |
$[2, 2, \frac{5}{2}]^{2}$ |
$[1,1,\frac{3}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[9, 6, 6, 0]$ |
$[2, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 9, 17]$ |
2.1.8.16c1.4 |
4 |
$x^{8} + 2 x^{6} + 4 x + 6$ |
$C_4\wr C_2$ (as 8T17) |
$32$ |
$4$ |
$[2, 2, \frac{5}{2}]^{4}$ |
$[1,1,\frac{3}{2}]^{4}$ |
$[\ ]^{4}$ |
$[\ ]^{4}$ |
$[9, 6, 6, 0]$ |
$[2, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 6, 16]$ |
2.1.8.16c1.5 |
4 |
$x^{8} + 2 x^{6} + 4 x^{4} + 4 x + 6$ |
$C_4\wr C_2$ (as 8T17) |
$32$ |
$4$ |
$[2, 2, \frac{5}{2}]^{4}$ |
$[1,1,\frac{3}{2}]^{4}$ |
$[\ ]^{4}$ |
$[\ ]^{4}$ |
$[9, 6, 6, 0]$ |
$[2, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 6, 16]$ |
2.1.8.16c1.6 |
2 |
$x^{8} + 2 x^{6} + 4 x^{3} + 4 x + 6$ |
$QD_{16}$ (as 8T8) |
$16$ |
$2$ |
$[2, 2, \frac{5}{2}]^{2}$ |
$[1,1,\frac{3}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[9, 6, 6, 0]$ |
$[2, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 6, 16]$ |
Download
displayed columns for
results