These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.58j1.193 |
$x^{16} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.194 |
$x^{16} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.195 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.196 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.197 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.198 |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.199 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.200 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.201 |
$x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.202 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.203 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.204 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.205 |
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.206 |
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.207 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.208 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.209 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.210 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.211 |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.212 |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.213 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.214 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.215 |
$x^{16} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.216 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.217 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.218 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.219 |
$x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.220 |
$x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.221 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.222 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.223 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.58j1.224 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{2} + 6$ |
$C_2^6.(C_2^2\times S_4)$ (as 16T1668) |
$6144$ |
$1$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{10}{3},\frac{10}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ |
$[\frac{5}{3},\frac{5}{3},\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ |
$[43, 36, 20, 8, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |