$x^{4} + \left(b_{27} \pi^{7} + b_{23} \pi^{6} + b_{19} \pi^{5}\right) x^{3} + \left(b_{10} \pi^{3} + a_{6} \pi^{2}\right) x^{2} + \left(b_{25} \pi^{7} + b_{21} \pi^{6} + a_{17} \pi^{5}\right) x + c_{28} \pi^{8} + c_{12} \pi^{4} + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Galois group: | $C_4^2:C_2$ (show 2), $C_4 \times D_4$ (show 2), $C_4^2:C_2$ (show 3), $C_4^2:C_2$ (show 1), $C_2^2.D_4$ (show 4), $C_8.D_4$ (show 2), $C_2^4.C_2^3$ (show 4), $C_4^2.D_4$ (show 4), $C_4^2.D_4$ (show 4), $\OD_{16}.D_4$ (show 2), $C_2^5.(C_2\times D_4)$ (show 8), $(D_4\times C_2^3).C_2^3$ (show 8) |
Hidden Artin slopes: | $[\ ]^{2}$ (show 12), $[\frac{7}{2}]^{2}$ (show 2), $[2,2,3]^{4}$ (show 8), $[2,2,\frac{7}{2}]^{4}$ (show 8), $[2]^{4}$ (show 4), $[2,\frac{7}{2}]^{2}$ (show 6), $[\frac{7}{2}]^{4}$ (show 4) |
Indices of inseparability: | $[37,26,24,8,0]$ |
Associated inertia: | $[1,2,1]$ |
Jump Set: | $[1,5,10,32,48]$ |
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.52k1.38 |
$x^{16} + 8 x^{11} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 10$ |
$C_4^2.D_4$ (as 16T321) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3]^{4}$ |
$[\frac{7}{2}]^{4}$ |
$[\frac{5}{2}]^{4}$ |
$[37, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 5, 10, 32, 48]$ |
2.1.16.52k1.39 |
$x^{16} + 8 x^{11} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 26$ |
$C_4^2.D_4$ (as 16T321) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3]^{4}$ |
$[\frac{7}{2}]^{4}$ |
$[\frac{5}{2}]^{4}$ |
$[37, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 5, 10, 32, 48]$ |
2.1.16.52k1.40 |
$x^{16} + 8 x^{15} + 8 x^{11} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 10$ |
$C_4^2.D_4$ (as 16T321) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3]^{4}$ |
$[\frac{7}{2}]^{4}$ |
$[\frac{5}{2}]^{4}$ |
$[37, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 5, 10, 32, 48]$ |
2.1.16.52k1.44 |
$x^{16} + 8 x^{15} + 8 x^{11} + 4 x^{10} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 10$ |
$C_4^2.D_4$ (as 16T321) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3]^{4}$ |
$[\frac{7}{2}]^{4}$ |
$[\frac{5}{2}]^{4}$ |
$[37, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 5, 10, 32, 48]$ |
Download
displayed columns for
results