The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.62a1.1593 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$D_4:D_4$ (as 16T152) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.62a1.1594 |
$( x^{2} + x + 1 )^{8} + 16 x ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_4^2:C_2^2$ (as 16T175) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.62a1.1595 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$D_4:D_4$ (as 16T152) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.62a1.1596 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 32 x + 2$ |
$C_4^2:C_2^2$ (as 16T175) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.62a1.1597 |
$( x^{2} + x + 1 )^{8} + 16 x ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_4^2:C_2^2$ (as 16T175) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.62a1.1598 |
$( x^{2} + x + 1 )^{8} + 16 x ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 32 x + 2$ |
$D_4:D_4$ (as 16T152) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.62a1.1599 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$D_4:D_4$ (as 16T152) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.62a1.1600 |
$( x^{2} + x + 1 )^{8} + 16 x ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_4^2:C_2^2$ (as 16T175) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |