The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.2.8.62a1.1615 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_4^2:D_4$ (as 16T406) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,4]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.1616 |
$( x^{2} + x + 1 )^{8} + 16 x ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_4^2:D_4$ (as 16T406) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,4]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.1617 |
$( x^{2} + x + 1 )^{8} + 16 ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_4^2:D_4$ (as 16T406) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,4]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.1618 |
$( x^{2} + x + 1 )^{8} + \left(16 x + 16\right) ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_4^2:D_4$ (as 16T406) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,4]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |