These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.68e1.3137 |
$x^{16} + 8 x^{14} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3145 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3146 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3154 |
$x^{16} + 16 x^{15} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3159 |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3163 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3164 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3166 |
$x^{16} + 16 x^{15} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3175 |
$x^{16} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3176 |
$x^{16} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3181 |
$x^{16} + 16 x^{15} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3182 |
$x^{16} + 16 x^{15} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3189 |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3190 |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3199 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.68e1.3200 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 10$ |
$C_2^4.C_2\wr D_4$ (as 16T1452) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[2,2,\frac{17}{4},\frac{9}{2},\frac{19}{4},\frac{39}{8}]^{2}$ |
$[1,1,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |