The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.64g1.4453 |
$x^{16} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2.D_4$ (as 16T353) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,4]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4454 |
$x^{16} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 46$ |
$C_4^2.D_4$ (as 16T353) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,4]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4455 |
$x^{16} + 16 x^{15} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2.D_4$ (as 16T353) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,4]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4456 |
$x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2.D_4$ (as 16T353) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,4]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4457 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2.D_4$ (as 16T353) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,4]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4458 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 46$ |
$C_4^2.D_4$ (as 16T353) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,4]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4459 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2.D_4$ (as 16T353) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,4]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4460 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2.D_4$ (as 16T353) |
$128$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,4]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4461 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$D_8:C_2$ (as 16T38) |
$32$ |
$4$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4462 |
$x^{16} + 16 x^{15} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$D_8:C_2$ (as 16T38) |
$32$ |
$4$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4463 |
$x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$D_8:C_2$ (as 16T44) |
$32$ |
$4$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4464 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$D_8:C_2$ (as 16T44) |
$32$ |
$4$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4465 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2\times \SD_{16}$ (as 16T48) |
$32$ |
$4$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4466 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2\times \SD_{16}$ (as 16T48) |
$32$ |
$4$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4467 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$D_8:C_2$ (as 16T45) |
$32$ |
$4$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4468 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$D_8:C_2$ (as 16T45) |
$32$ |
$4$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4469 |
$x^{16} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$\OD_{16}:D_4$ (as 16T331) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4470 |
$x^{16} + 16 x^{15} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$\OD_{16}:D_4$ (as 16T331) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4471 |
$x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$\OD_{16}:D_4$ (as 16T331) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4472 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$\OD_{16}:D_4$ (as 16T331) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4473 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4474 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 46$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4475 |
$x^{16} + 16 x^{15} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T107) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4476 |
$x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T107) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4477 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4478 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 46$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4479 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4480 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 46$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4481 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T107) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4482 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T107) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4483 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4484 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 46$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4485 |
$x^{16} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4486 |
$x^{16} + 16 x^{15} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4487 |
$x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4488 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4489 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4490 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4491 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4492 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4493 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4494 |
$x^{16} + 16 x^{15} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4495 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4496 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4497 |
$x^{16} + 16 x^{15} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4498 |
$x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4499 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4500 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4501 |
$x^{16} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 14$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4502 |
$x^{16} + 16 x^{15} + 4 x^{12} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 14$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |