These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.62g1.65 |
$x^{16} + 8 x^{15} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 47, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.66 |
$x^{16} + 8 x^{15} + 16 x^{4} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 47, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.67 |
$x^{16} + 8 x^{15} + 16 x^{2} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 47, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.68 |
$x^{16} + 8 x^{15} + 16 x^{4} + 16 x^{2} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 47, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.73 |
$x^{16} + 8 x^{15} + 8 x^{14} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 46, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.74 |
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{4} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 46, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.75 |
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{2} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 46, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.76 |
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{4} + 16 x^{2} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 46, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.81 |
$x^{16} + 8 x^{15} + 8 x^{12} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 47, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.82 |
$x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{4} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 47, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.83 |
$x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{2} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 47, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.84 |
$x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{4} + 16 x^{2} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 47, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.89 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 46, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.90 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 16 x^{4} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 46, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.91 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 16 x^{2} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 46, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g1.92 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 16 x^{4} + 16 x^{2} + 10$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[47, 46, 32, 16, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.51 |
$x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 26$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.52 |
$x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 26$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.55 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{4} + 26$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.56 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 26$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.59 |
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 26$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.60 |
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 26$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.63 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 26$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.64 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 26$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |