Defining polynomial
| $x^{4} + \left(b_{31} \pi^{8} + b_{27} \pi^{7} + b_{23} \pi^{6} + b_{19} \pi^{5}\right) x^{3} + a_{2} \pi x^{2} + \left(b_{29} \pi^{8} + b_{25} \pi^{7} + b_{21} \pi^{6} + a_{17} \pi^{5}\right) x + c_{32} \pi^{9} + c_{4} \pi^{2} + \pi$ | 
Invariants
| Residue field characteristic: | $2$ | 
| Degree: | $4$ | 
| Base field: | 2.1.4.11a1.14 | 
| Ramification index $e$: | $4$ | 
| Residue field degree $f$: | $1$ | 
| Discriminant exponent $c$: | $20$ | 
| Absolute Artin slopes: | $[2,3,4,5]$ | 
| Swan slopes: | $[1,8]$ | 
| Means: | $\langle\frac{1}{2},\frac{17}{4}\rangle$ | 
| Rams: | $(1,15)$ | 
| Field count: | $142$ (incomplete) | 
| Ambiguity: | $4$ | 
| Mass: | $128$ | 
| Absolute Mass: | $64$ ($48$ currently in the LMFDB) | 
Diagrams
Varying
The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Fields
Showing all 2
Download displayed columns for results| Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set | 
|---|---|---|---|---|---|---|---|---|
| 2.1.16.64g1.571 | $x^{16} + 8 x^{14} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ | $C_4^2:D_4$ (as 16T394) | $128$ | $2$ | $[\frac{7}{2},\frac{17}{4}]^{2}$ | $[49, 34, 20, 8, 0]$ | $[1, 1, 1, 1]$ | $[1, 11, 27, 43, 59]$ | 
| 2.1.16.64g1.574 | $x^{16} + 16 x^{15} + 8 x^{14} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ | $C_4^2:D_4$ (as 16T394) | $128$ | $2$ | $[\frac{7}{2},\frac{17}{4}]^{2}$ | $[49, 34, 20, 8, 0]$ | $[1, 1, 1, 1]$ | $[1, 11, 27, 43, 59]$ | 
