These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.60j1.76 |
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 18$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.78 |
$x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 18$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.84 |
$x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 45, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.86 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 45, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |