These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.56l1.2 |
$x^{16} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^4.C_2^3$ (as 16T231) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 32, 48, 64]$ |
| 2.1.16.56l1.6 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^4.C_2^3$ (as 16T231) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 32, 48, 64]$ |
| 2.1.16.56l1.236 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 14$ |
$C_2^4.D_4$ (as 16T268) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.56l1.238 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 14$ |
$C_2^4.D_4$ (as 16T268) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 8, 32]$ |