Properties

Label 2.1.4.11a1.12-1.4.12b
Base 2.1.4.11a1.12
Degree \(4\)
e \(4\)
f \(1\)
c \(12\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{4} + \left(b_{15} \pi^{4} + b_{11} \pi^{3}\right) x^{3} + a_{2} \pi x^{2} + \left(b_{13} \pi^{4} + a_{9} \pi^{3}\right) x + c_{16} \pi^{5} + c_{4} \pi^{2} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $4$
Base field: 2.1.4.11a1.12
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $12$
Absolute Artin slopes: $[2,3,4,4]$
Swan slopes: $[1,4]$
Means: $\langle\frac{1}{2},\frac{9}{4}\rangle$
Rams: $(1,7)$
Field count: $4$ (complete)
Ambiguity: $4$
Mass: $8$
Absolute Mass: $2$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_2^4.C_2^3$ (show 2), $C_2^4.D_4$ (show 2)
Hidden Artin slopes: $[3,\frac{7}{2}]^{2}$
Indices of inseparability: $[41,36,20,8,0]$
Associated inertia: $[1,1,2]$
Jump Set: $[1,2,4,8,32]$ (show 2), $[1,9,32,48,64]$ (show 2)

Fields


Showing all 4

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.16.56l1.2 $x^{16} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^4.C_2^3$ (as 16T231) $128$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ $[1,2,2,\frac{5}{2},3,3]^{2}$ $[3,\frac{7}{2}]^{2}$ $[2,\frac{5}{2}]^{2}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 9, 32, 48, 64]$
2.1.16.56l1.6 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^4.C_2^3$ (as 16T231) $128$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ $[1,2,2,\frac{5}{2},3,3]^{2}$ $[3,\frac{7}{2}]^{2}$ $[2,\frac{5}{2}]^{2}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 9, 32, 48, 64]$
2.1.16.56l1.236 $x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 14$ $C_2^4.D_4$ (as 16T268) $128$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ $[1,2,2,\frac{5}{2},3,3]^{2}$ $[3,\frac{7}{2}]^{2}$ $[2,\frac{5}{2}]^{2}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 2, 4, 8, 32]$
2.1.16.56l1.238 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 14$ $C_2^4.D_4$ (as 16T268) $128$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ $[1,2,2,\frac{5}{2},3,3]^{2}$ $[3,\frac{7}{2}]^{2}$ $[2,\frac{5}{2}]^{2}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 2, 4, 8, 32]$
  displayed columns for results