These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.54o1.105 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 18$ |
$C_4^2:C_2$ (as 16T17) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 32, 48, 64]$ |
2.1.16.54o1.121 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 18$ |
$C_4 \times D_4$ (as 16T19) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 32, 48, 64]$ |
2.1.16.54o1.127 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 18$ |
$C_4 \times D_4$ (as 16T19) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 32, 48, 64]$ |
2.1.16.54o1.143 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 18$ |
$C_2^2 : C_4$ (as 16T10) |
$16$ |
$16$ |
$[2, 3, \frac{7}{2}, 4]$ |
$[1,2,\frac{5}{2},3]$ |
$[\ ]$ |
$[\ ]$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 32, 48, 64]$ |
2.1.16.54o1.152 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 18$ |
$C_2^2 : C_4$ (as 16T10) |
$16$ |
$16$ |
$[2, 3, \frac{7}{2}, 4]$ |
$[1,2,\frac{5}{2},3]$ |
$[\ ]$ |
$[\ ]$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 32, 48, 64]$ |
2.1.16.54o1.287 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 14$ |
$C_4 \times D_4$ (as 16T19) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.54o1.297 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 14$ |
$C_4:C_4$ (as 16T8) |
$16$ |
$16$ |
$[2, 3, \frac{7}{2}, 4]$ |
$[1,2,\frac{5}{2},3]$ |
$[\ ]$ |
$[\ ]$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.54o1.306 |
$x^{16} + 4 x^{14} + 8 x^{13} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 14$ |
$C_4:C_4$ (as 16T8) |
$16$ |
$16$ |
$[2, 3, \frac{7}{2}, 4]$ |
$[1,2,\frac{5}{2},3]$ |
$[\ ]$ |
$[\ ]$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.54o1.318 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 8 x^{11} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 14$ |
$C_2 \times (C_2^2:C_4)$ (as 16T21) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.54o1.328 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 14$ |
$C_4 \times D_4$ (as 16T19) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |