\(x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 18\)
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $54$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$:
|
$C_2\times C_4$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[2, 3, \frac{7}{2}, 4]$ |
Visible Swan slopes: | $[1,2,\frac{5}{2},3]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}, \frac{39}{16}\rangle$ |
Rams: | $(1, 3, 5, 9)$ |
Jump set: | $[1, 7, 32, 48, 64]$ |
Roots of unity: | $8 = 2^{ 3 }$ |
$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{-2})$, 2.1.4.8b1.1, 2.1.4.9a1.3, 2.1.4.9a1.4, 2.1.4.11a1.10, 2.1.4.11a1.12, 2.1.8.22d1.11, 2.1.8.24c1.2, 2.1.8.24c1.8
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$,$1$,$1$ |
Indices of inseparability: | $[39, 30, 20, 8, 0]$ |