These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.4.4.32b1.1 |
$( x^{4} + x + 1 )^{4} + 2 ( x^{4} + x + 1 )^{2} + 4 ( x^{4} + x + 1 ) + 2$ |
$C_4\times C_2^2$ (as 16T2) |
$16$ |
$16$ |
$[2, 3]^{4}$ |
$[1,2]^{4}$ |
$[\ ]$ |
$[\ ]$ |
$[5, 2, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 2, 4]$ |
| 2.4.4.32b1.15 |
$( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 4 x\right) ( x^{4} + x + 1 )^{3} + 2 ( x^{4} + x + 1 )^{2} + \left(4 x^{2} + 4\right) ( x^{4} + x + 1 ) + 12 x^{3} + 2$ |
$C_8\times C_2$ (as 16T5) |
$16$ |
$16$ |
$[2, 3]^{4}$ |
$[1,2]^{4}$ |
$[\ ]$ |
$[\ ]$ |
$[5, 2, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 2, 8]$ |
| 2.4.4.32b10.10 |
$( x^{4} + x + 1 )^{4} + \left(4 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + 2 x ( x^{4} + x + 1 )^{2} + \left(4 x^{2} + 4\right) ( x^{4} + x + 1 ) + 2$ |
$C_2^5:C_4$ (as 16T261) |
$128$ |
$4$ |
$[2, 2, 2, 2, 3]^{4}$ |
$[1,1,1,1,2]^{4}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[5, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + (t^2 + 1)$ |
$[1, 3, 7]$ |
| 2.4.4.32b10.46 |
$( x^{4} + x + 1 )^{4} + \left(4 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + 2 x ( x^{4} + x + 1 )^{2} + \left(4 x^{2} + 4\right) ( x^{4} + x + 1 ) + 6$ |
$C_2^5:C_4$ (as 16T261) |
$128$ |
$4$ |
$[2, 2, 2, 2, 3]^{4}$ |
$[1,1,1,1,2]^{4}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[5, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + (t^2 + 1)$ |
$[1, 3, 7]$ |
| 2.4.4.32b25.4 |
$( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 4 x^{2} + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{2} + 2 x\right) ( x^{4} + x + 1 )^{2} + \left(4 x^{2} + 4 x + 4\right) ( x^{4} + x + 1 ) + 2$ |
$C_2 \times (C_2^2:C_4)$ (as 16T21) |
$32$ |
$8$ |
$[2, 2, 3]^{4}$ |
$[1,1,2]^{4}$ |
$[2]$ |
$[1]$ |
$[5, 2, 0]$ |
$[1, 1]$ |
$z^2 + (t^2 + t),(t^2 + t) z + (t^2 + t + 1)$ |
$[1, 3, 7]$ |
| 2.4.4.32b25.29 |
$( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 4 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{2} + 2 x\right) ( x^{4} + x + 1 )^{2} + \left(4 x^{2} + 4 x\right) ( x^{4} + x + 1 ) + 4 x + 2$ |
$C_2 \times (C_8:C_2)$ (as 16T15) |
$32$ |
$8$ |
$[2, 2, 3]^{4}$ |
$[1,1,2]^{4}$ |
$[2]$ |
$[1]$ |
$[5, 2, 0]$ |
$[1, 1]$ |
$z^2 + (t^2 + t),(t^2 + t) z + (t^2 + t + 1)$ |
$[1, 3, 7]$ |
| 2.4.4.32b39.8 |
$( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 2 x^{2} + 4 x\right) ( x^{4} + x + 1 )^{3} + 2 x^{3} ( x^{4} + x + 1 )^{2} + \left(4 x^{3} + 4 x\right) ( x^{4} + x + 1 ) + 2$ |
$C_2^5:C_4$ (as 16T261) |
$128$ |
$4$ |
$[2, 2, 2, 2, 3]^{4}$ |
$[1,1,1,1,2]^{4}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[5, 2, 0]$ |
$[1, 1]$ |
$z^2 + t^3,t^3 z + (t^3 + t)$ |
$[1, 3, 7]$ |
| 2.4.4.32b39.44 |
$( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 2 x^{2} + 4 x + 4\right) ( x^{4} + x + 1 )^{3} + 2 x^{3} ( x^{4} + x + 1 )^{2} + \left(4 x^{3} + 4 x\right) ( x^{4} + x + 1 ) + 6$ |
$C_2^5:C_4$ (as 16T261) |
$128$ |
$4$ |
$[2, 2, 2, 2, 3]^{4}$ |
$[1,1,1,1,2]^{4}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[5, 2, 0]$ |
$[1, 1]$ |
$z^2 + t^3,t^3 z + (t^3 + t)$ |
$[1, 3, 7]$ |
| 2.4.4.32b58.16 |
$( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(4 x^{3} + 4 x^{2} + 4 x\right) ( x^{4} + x + 1 ) + 2$ |
$C_2^4:C_4$ (as 16T94) |
$64$ |
$4$ |
$[2, 2, 2, 3]^{4}$ |
$[1,1,1,2]^{4}$ |
$[2,2]$ |
$[1,1]$ |
$[5, 2, 0]$ |
$[1, 1]$ |
$z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t^2 + t)$ |
$[1, 3, 7]$ |
| 2.4.4.32b58.37 |
$( x^{4} + x + 1 )^{4} + \left(2 x^{2} + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(4 x^{3} + 4 x^{2} + 4 x\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ |
$\OD_{16}:C_2^2$ (as 16T99) |
$64$ |
$4$ |
$[2, 2, 2, 3]^{4}$ |
$[1,1,1,2]^{4}$ |
$[2,2]$ |
$[1,1]$ |
$[5, 2, 0]$ |
$[1, 1]$ |
$z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t^2 + t)$ |
$[1, 3, 7]$ |