These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.3.4.33a1.25 |
$( x^{3} + x + 1 )^{4} + 10$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2, 3, 4]^{3}$ |
$[1,2,3]^{3}$ |
$[2]$ |
$[1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.26 |
$( x^{3} + x + 1 )^{4} + 26$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2, 3, 4]^{3}$ |
$[1,2,3]^{3}$ |
$[2]$ |
$[1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.27 |
$( x^{3} + x + 1 )^{4} + 8 x ( x^{3} + x + 1 )^{3} + 10$ |
$D_4\times A_4$ (as 12T51) |
$96$ |
$2$ |
$[2, 2, 2, 3, 4]^{3}$ |
$[1,1,1,2,3]^{3}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.28 |
$( x^{3} + x + 1 )^{4} + 8 x ( x^{3} + x + 1 )^{3} + 26$ |
$D_4\times A_4$ (as 12T51) |
$96$ |
$2$ |
$[2, 2, 2, 3, 4]^{3}$ |
$[1,1,1,2,3]^{3}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.29 |
$( x^{3} + x + 1 )^{4} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.30 |
$( x^{3} + x + 1 )^{4} + 8 x ( x^{3} + x + 1 )^{3} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.31 |
$( x^{3} + x + 1 )^{4} + 8 ( x^{3} + x + 1 )^{3} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.32 |
$( x^{3} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{3} + x + 1 )^{3} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.33 |
$( x^{3} + x + 1 )^{4} + 8 x ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.34 |
$( x^{3} + x + 1 )^{4} + 8 x^{2} ( x^{3} + x + 1 )^{3} + 8 x ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.35 |
$( x^{3} + x + 1 )^{4} + 8 ( x^{3} + x + 1 )^{3} + 8 x ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.36 |
$( x^{3} + x + 1 )^{4} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 )^{3} + 8 x ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.37 |
$( x^{3} + x + 1 )^{4} + 8 ( x^{3} + x + 1 ) + 10$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[3, 4]^{6}$ |
$[2,3]^{6}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.38 |
$( x^{3} + x + 1 )^{4} + 8 x ( x^{3} + x + 1 )^{3} + 8 ( x^{3} + x + 1 ) + 10$ |
$D_4\times A_4$ (as 12T51) |
$96$ |
$2$ |
$[2, 2, 3, 4]^{6}$ |
$[1,1,2,3]^{6}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.39 |
$( x^{3} + x + 1 )^{4} + 8 ( x^{3} + x + 1 )^{3} + 8 ( x^{3} + x + 1 ) + 10$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[3, 4]^{6}$ |
$[2,3]^{6}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.40 |
$( x^{3} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{3} + x + 1 )^{3} + 8 ( x^{3} + x + 1 ) + 10$ |
$D_4\times A_4$ (as 12T51) |
$96$ |
$2$ |
$[2, 2, 3, 4]^{6}$ |
$[1,1,2,3]^{6}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.41 |
$( x^{3} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.42 |
$( x^{3} + x + 1 )^{4} + 8 x^{2} ( x^{3} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.43 |
$( x^{3} + x + 1 )^{4} + 8 x ( x^{3} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.44 |
$( x^{3} + x + 1 )^{4} + \left(8 x^{2} + 8 x\right) ( x^{3} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.45 |
$( x^{3} + x + 1 )^{4} + 8 ( x^{3} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.46 |
$( x^{3} + x + 1 )^{4} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.47 |
$( x^{3} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{3} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.48 |
$( x^{3} + x + 1 )^{4} + \left(8 x^{2} + 8 x + 8\right) ( x^{3} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |