These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.3.4.30a3.91 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |
2.3.4.30a3.92 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(12 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |
2.3.4.30a3.95 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |
2.3.4.30a3.96 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(12 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |