Properties

Label 2.1.2.3a1.2-1.6.17a
Base 2.1.2.3a1.2
Degree \(6\)
e \(6\)
f \(1\)
c \(17\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{6} + \left(b_{23} \pi^{4} + b_{17} \pi^{3}\right) x^{5} + \left(b_{21} \pi^{4} + b_{15} \pi^{3}\right) x^{3} + \left(b_{19} \pi^{4} + b_{13} \pi^{3}\right) x + c_{24} \pi^{5} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $6$
Base field: $\Q_{2}(\sqrt{-2\cdot 5})$
Ramification index $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $17$
Absolute Artin slopes: $[3,4]$
Swan slopes: $[4]$
Means: $\langle2\rangle$
Rams: $(12)$
Field count: $64$ (complete)
Ambiguity: $2$
Mass: $64$
Absolute Mass: $32$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $D_{12}$ (show 2), $S_3\times D_4$ (show 2), $C_4:S_4$ (show 6), $D_4\times S_4$ (show 6), $C_2^4:D_{12}$ (show 24), $C_2\wr D_6$ (show 24)
Hidden Artin slopes: $[2,\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ (show 16), $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}$ (show 8), $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}$ (show 8), $[2]^{2}$ (show 2), $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ (show 16), $[\ ]^{2}$ (show 2), $[\frac{4}{3},\frac{4}{3},2]^{2}$ (show 2), $[2,\frac{8}{3},\frac{8}{3}]^{2}$ (show 4), $[\frac{8}{3},\frac{8}{3}]^{2}$ (show 4), $[\frac{4}{3},\frac{4}{3}]^{2}$ (show 2)
Indices of inseparability: $[24,12,0]$
Associated inertia: $[2,1,1]$
Jump Set: $[3,9,21]$

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.12.35a1.67 $x^{12} + 8 x^{11} + 10$ $D_4\times S_4$ (as 12T86) $192$ $2$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, 4]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,3]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2]^{2}$ $[\frac{1}{3},\frac{1}{3},1]^{2}$ $[24, 12, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.35a1.68 $x^{12} + 8 x^{11} + 26$ $D_4\times S_4$ (as 12T86) $192$ $2$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, 4]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,3]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2]^{2}$ $[\frac{1}{3},\frac{1}{3},1]^{2}$ $[24, 12, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
  displayed columns for results