Properties

Label 2.1.2.2a1.1-2.2.4a
Base 2.1.2.2a1.1
Degree \(4\)
e \(2\)
f \(2\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{2} + a_{1} \pi x + c_{2} \pi^{2} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $4$
Base field: $\Q_{2}(\sqrt{-1})$
Ramification index $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $4$
Absolute Artin slopes: $[2,2]$
Swan slopes: $[1]$
Means: $\langle\frac{1}{2}\rangle$
Rams: $(1)$
Field count: $3$ (complete)
Ambiguity: $4$
Mass: $3$
Absolute Mass: $3/4$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $D_4$ (show 2), $C_2^3: C_4$ (show 1)
Hidden Artin slopes: $[\ ]$ (show 2), $[2]^{2}$ (show 1)
Indices of inseparability: $[3,2,0]$ (show 1), $[3,3,0]$ (show 2)
Associated inertia: $[1]$ (show 2), $[2]$ (show 1)
Jump Set: $[1,3,6]$

Fields


Showing all 3

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.2.4.12a1.1 $( x^{2} + x + 1 )^{4} + 2 ( x^{2} + x + 1 )^{3} + 2$ $D_4$ (as 8T4) $8$ $8$ $[2, 2]^{2}$ $[1,1]^{2}$ $[\ ]$ $[\ ]$ $[3, 3, 0]$ $[1]$ $z^3 + 1$ $[1, 3, 6]$
2.2.4.12a1.3 $( x^{2} + x + 1 )^{4} + 2 ( x^{2} + x + 1 )^{3} + 6$ $D_4$ (as 8T4) $8$ $8$ $[2, 2]^{2}$ $[1,1]^{2}$ $[\ ]$ $[\ ]$ $[3, 3, 0]$ $[1]$ $z^3 + 1$ $[1, 3, 6]$
2.2.4.12a6.1 $( x^{2} + x + 1 )^{4} + \left(2 x + 2\right) ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ $C_2^3: C_4$ (as 8T21) $32$ $2$ $[2, 2, 2]^{4}$ $[1,1,1]^{4}$ $[2]^{2}$ $[1]^{2}$ $[3, 2, 0]$ $[2]$ $z^3 + t z + t$ $[1, 3, 6]$
  displayed columns for results