Properties

Label 2.1.2.2a1.1-1.4.8b
Base 2.1.2.2a1.1
Degree \(4\)
e \(4\)
f \(1\)
c \(8\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{4} + b_{7} \pi^{2} x^{3} + a_{2} \pi x^{2} + a_{5} \pi^{2} x + c_{8} \pi^{3} + c_{4} \pi^{2} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $4$
Base field: $\Q_{2}(\sqrt{-1})$
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $8$
Absolute Artin slopes: $[2,2,\frac{5}{2}]$
Swan slopes: $[1,2]$
Means: $\langle\frac{1}{2},\frac{5}{4}\rangle$
Rams: $(1,3)$
Field count: $3$ (complete)
Ambiguity: $4$
Mass: $2$
Absolute Mass: $1$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $QD_{16}$ (show 1), $C_4\wr C_2$ (show 2)
Hidden Artin slopes: $[\ ]^{2}$ (show 1), $[\ ]^{4}$ (show 2)
Indices of inseparability: $[9,6,6,0]$
Associated inertia: $[2,1]$
Jump Set: $[1,3,9,17]$

Fields


Showing all 3

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.8.16c1.1 $x^{8} + 2 x^{6} + 4 x + 2$ $C_4\wr C_2$ (as 8T17) $32$ $4$ $[2, 2, \frac{5}{2}]^{4}$ $[1,1,\frac{3}{2}]^{4}$ $[\ ]^{4}$ $[\ ]^{4}$ $[9, 6, 6, 0]$ $[2, 1]$ $z^6 + 1,z + 1$ $[1, 3, 9, 17]$
2.1.8.16c1.2 $x^{8} + 2 x^{6} + 4 x^{4} + 4 x + 2$ $C_4\wr C_2$ (as 8T17) $32$ $4$ $[2, 2, \frac{5}{2}]^{4}$ $[1,1,\frac{3}{2}]^{4}$ $[\ ]^{4}$ $[\ ]^{4}$ $[9, 6, 6, 0]$ $[2, 1]$ $z^6 + 1,z + 1$ $[1, 3, 9, 17]$
2.1.8.16c1.3 $x^{8} + 2 x^{6} + 4 x^{3} + 4 x + 2$ $QD_{16}$ (as 8T8) $16$ $2$ $[2, 2, \frac{5}{2}]^{2}$ $[1,1,\frac{3}{2}]^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[9, 6, 6, 0]$ $[2, 1]$ $z^6 + 1,z + 1$ $[1, 3, 9, 17]$
  displayed columns for results