These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
  
          
                  | Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Artin slope content $/ \Q_p$ | Swan slope content $/ \Q_p$ | Hidden Artin slopes $/ \Q_p$ | Hidden Swan slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Resid. Poly | Jump Set | 
      
      
              | 2.1.8.26b1.1 | $x^{8} + 2 x^{4} + 8 x^{3} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.2 | $x^{8} + 2 x^{4} + 8 x^{3} + 16 x^{2} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.3 | $x^{8} + 2 x^{4} + 8 x^{3} + 16 x + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.4 | $x^{8} + 2 x^{4} + 8 x^{3} + 16 x^{2} + 16 x + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.9 | $x^{8} + 10 x^{4} + 8 x^{3} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.10 | $x^{8} + 10 x^{4} + 8 x^{3} + 16 x^{2} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.15 | $x^{8} + 10 x^{4} + 8 x^{3} + 8 x^{2} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.16 | $x^{8} + 8 x^{7} + 10 x^{4} + 8 x^{3} + 8 x^{2} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.17 | $x^{8} + 4 x^{6} + 2 x^{4} + 8 x^{3} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.18 | $x^{8} + 4 x^{6} + 2 x^{4} + 8 x^{3} + 16 x^{2} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.23 | $x^{8} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.24 | $x^{8} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 16 x^{2} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.25 | $x^{8} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 16 x + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.26 | $x^{8} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 16 x^{2} + 16 x + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.31 | $x^{8} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 8 x^{2} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ | 
      
              | 2.1.8.26b1.32 | $x^{8} + 8 x^{7} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 8 x^{2} + 2$ | $C_2 \wr C_2\wr C_2$ (as 8T35) | $128$ | $2$ | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | $[2,3,4]^{2}$ | $[1,2,3]^{2}$ | $[19, 12, 4, 0]$ | $[1, 1, 1]$ | $z^4 + 1,z^2 + 1,z + 1$ | $[1, 5, 13, 21]$ |