These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.8.26b1.1 |
$x^{8} + 2 x^{4} + 8 x^{3} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.2 |
$x^{8} + 2 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.3 |
$x^{8} + 2 x^{4} + 8 x^{3} + 16 x + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.4 |
$x^{8} + 2 x^{4} + 8 x^{3} + 16 x^{2} + 16 x + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.5 |
$x^{8} + 8 x^{5} + 2 x^{4} + 8 x^{3} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.6 |
$x^{8} + 8 x^{5} + 2 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.7 |
$x^{8} + 8 x^{7} + 8 x^{5} + 2 x^{4} + 8 x^{3} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.8 |
$x^{8} + 8 x^{7} + 8 x^{5} + 2 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.9 |
$x^{8} + 10 x^{4} + 8 x^{3} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.10 |
$x^{8} + 10 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.11 |
$x^{8} + 8 x^{5} + 10 x^{4} + 8 x^{3} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.12 |
$x^{8} + 8 x^{5} + 10 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.13 |
$x^{8} + 8 x^{7} + 8 x^{5} + 10 x^{4} + 8 x^{3} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.14 |
$x^{8} + 8 x^{7} + 8 x^{5} + 10 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.15 |
$x^{8} + 10 x^{4} + 8 x^{3} + 8 x^{2} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.16 |
$x^{8} + 8 x^{7} + 10 x^{4} + 8 x^{3} + 8 x^{2} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.17 |
$x^{8} + 4 x^{6} + 2 x^{4} + 8 x^{3} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.18 |
$x^{8} + 4 x^{6} + 2 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.19 |
$x^{8} + 4 x^{6} + 8 x^{5} + 2 x^{4} + 8 x^{3} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.20 |
$x^{8} + 4 x^{6} + 8 x^{5} + 2 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.21 |
$x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 2 x^{4} + 8 x^{3} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.22 |
$x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 2 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.23 |
$x^{8} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.24 |
$x^{8} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.25 |
$x^{8} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 16 x + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.26 |
$x^{8} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 16 x^{2} + 16 x + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.27 |
$x^{8} + 4 x^{6} + 8 x^{5} + 10 x^{4} + 8 x^{3} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.28 |
$x^{8} + 4 x^{6} + 8 x^{5} + 10 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.29 |
$x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 10 x^{4} + 8 x^{3} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.30 |
$x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 10 x^{4} + 8 x^{3} + 16 x^{2} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[3,4]$ |
$[2,3]$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.31 |
$x^{8} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 8 x^{2} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
| 2.1.8.26b1.32 |
$x^{8} + 8 x^{7} + 4 x^{6} + 10 x^{4} + 8 x^{3} + 8 x^{2} + 2$ |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,3,4]^{2}$ |
$[1,2,3]^{2}$ |
$[19, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |