Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
| Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.66g1.1 |
|
$x^{16} + 2 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.2 |
|
$x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.3 |
|
$x^{16} + 16 x^{13} + 2 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.4 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 2 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.5 |
|
$x^{16} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.6 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.7 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.8 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.9 |
|
$x^{16} + 18 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.10 |
|
$x^{16} + 16 x^{14} + 18 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.11 |
|
$x^{16} + 16 x^{13} + 18 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.12 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 18 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.13 |
|
$x^{16} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.14 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.15 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.16 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.17 |
|
$x^{16} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.18 |
|
$x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.19 |
|
$x^{16} + 16 x^{13} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.20 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.21 |
|
$x^{16} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.22 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.23 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.24 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.25 |
|
$x^{16} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.26 |
|
$x^{16} + 16 x^{14} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.27 |
|
$x^{16} + 16 x^{13} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.28 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.29 |
|
$x^{16} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.30 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.31 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.32 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$(C_2^2\times D_4^2).D_4$ (as 16T1357) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,\frac{7}{2},4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.33 |
|
$x^{16} + 2 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1276) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.34 |
|
$x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1276) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.35 |
|
$x^{16} + 16 x^{13} + 2 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1276) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.36 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 2 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1276) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.37 |
|
$x^{16} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_8$ (as 16T1275) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.38 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_8$ (as 16T1275) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.39 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_8$ (as 16T1275) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.40 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_8$ (as 16T1275) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.41 |
|
$x^{16} + 18 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1276) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.42 |
|
$x^{16} + 16 x^{14} + 18 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1276) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.43 |
|
$x^{16} + 16 x^{13} + 18 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1276) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.44 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 18 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1276) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.45 |
|
$x^{16} + 16 x^{9} + 18 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_8$ (as 16T1275) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.46 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 18 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_8$ (as 16T1275) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.47 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_8$ (as 16T1275) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.48 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_8$ (as 16T1275) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.49 |
|
$x^{16} + 2 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_8$ (as 16T1275) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |
| 2.1.16.66g1.50 |
|
$x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_8$ (as 16T1275) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[2,3,4,\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,2,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 29, 45]$ |