Properties

Label 2.1.16.66g1.16
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(66\)
Galois group $(C_2^2\times D_4^2).D_4$ (as 16T1357)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $66$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, \frac{7}{2}, \frac{9}{2}, \frac{39}{8}]$
Visible Swan slopes:$[1,\frac{5}{2},\frac{7}{2},\frac{31}{8}]$
Means:$\langle\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{51}{16}\rangle$
Rams:$(1, 4, 8, 11)$
Jump set:$[1, 5, 13, 29, 45]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.1.4.9a1.1, 2.1.8.27a1.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$,$1$
Indices of inseparability:$[51, 40, 24, 8, 0]$

Invariants of the Galois closure

Galois degree: $2048$
Galois group: $(C_2^2\times D_4^2).D_4$ (as 16T1357)
Inertia group: $C_2^7.D_4$ (as 16T1131)
Wild inertia group: not computed
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]$
Galois mean slope: $4.677734375$
Galois splitting model: $x^{16} - 16 x^{13} + 20 x^{12} - 224 x^{11} + 80 x^{10} + 3216 x^{9} + 792 x^{8} - 12288 x^{7} - 7528 x^{6} + 15664 x^{5} + 17448 x^{4} + 4400 x^{3} + 776 x^{2} + 64 x + 37$ Copy content Toggle raw display