Properties

Label 2.1.16.62g
Base 2.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(62\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + 8 a_{47} x^{15} + 8 b_{46} x^{14} + 8 b_{44} x^{12} + 8 b_{42} x^{10} + 4 b_{24} x^{8} + \left(8 b_{36} + 16 c_{52}\right) x^{4} + 16 b_{51} x^{3} + 16 b_{50} x^{2} + 16 b_{49} x + 8 c_{32} + 16 c_{48} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $62$
Artin slopes: $[3,4,\frac{17}{4},\frac{17}{4}]$
Swan slopes: $[2,3,\frac{13}{4},\frac{13}{4}]$
Means: $\langle1,2,\frac{21}{8},\frac{47}{16}\rangle$
Rams: $(2,4,5,5)$
Field count: $384$ (complete)
Ambiguity: $8$
Mass: $256$
Absolute Mass: $256$

Diagrams

Varying

Indices of inseparability: $[47,42,32,16,0]$ (show 128), $[47,46,32,16,0]$ (show 128), $[47,47,32,16,0]$ (show 128)
Associated inertia: $[1,1,2]$ (show 256), $[1,1,3]$ (show 128)
Jump Set: $[1,3,7,15,31]$

Galois groups and Hidden Artin slopes

Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.

Fields


Showing 1-50 of 128

Next   displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.62g2.1 $x^{16} + 8 x^{15} + 8 x^{10} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.2 $x^{16} + 8 x^{15} + 8 x^{10} + 16 x^{3} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.3 $x^{16} + 8 x^{15} + 8 x^{10} + 16 x + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.4 $x^{16} + 8 x^{15} + 8 x^{10} + 16 x^{3} + 16 x + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.5 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.6 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x^{3} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.7 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.8 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x^{3} + 16 x + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.9 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.10 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.11 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.12 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 16 x + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.13 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.14 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.15 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.16 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 16 x + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.17 $x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.18 $x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.19 $x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 18$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.20 $x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 18$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.21 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.22 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.23 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{4} + 18$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.24 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 18$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.25 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.26 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.27 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 18$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.28 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 18$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.29 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.30 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 2$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.31 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 18$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.32 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 18$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ $[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.33 $x^{16} + 8 x^{15} + 8 x^{10} + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.34 $x^{16} + 8 x^{15} + 8 x^{10} + 16 x^{3} + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.35 $x^{16} + 8 x^{15} + 8 x^{10} + 16 x + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.36 $x^{16} + 8 x^{15} + 8 x^{10} + 16 x^{3} + 16 x + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.37 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.38 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x^{3} + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.39 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.40 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x^{3} + 16 x + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.41 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.42 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.43 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.44 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 16 x + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.45 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.46 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.47 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.48 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 16 x + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.49 $x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g2.50 $x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 10$ $C_2^6:(C_2\times A_4)$ (as 16T1299) $1536$ $1$ not computed not computed not computed not computed $[47, 42, 32, 16, 0]$ $[1, 1, 3]$ $z^8 + 1,z^4 + 1,z^3 + z + 1$ $[1, 3, 7, 15, 31]$
Next   displayed columns for results