Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.16.62g2.1 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.2 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 16 x^{3} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.3 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 16 x + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.4 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 16 x^{3} + 16 x + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.5 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.6 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x^{3} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.7 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.8 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x^{3} + 16 x + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.9 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.10 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.11 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.12 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 16 x + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.13 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.14 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.15 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.16 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 16 x + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.17 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.18 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.19 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 18$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.20 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.21 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.22 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.23 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{4} + 18$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.24 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.25 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.26 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.27 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 18$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.28 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.29 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.30 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.31 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 18$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.32 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.33 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.34 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 16 x^{3} + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.35 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 16 x + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.36 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 16 x^{3} + 16 x + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.37 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.38 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x^{3} + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.39 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.40 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 16 x^{3} + 16 x + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.41 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.42 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.43 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.44 |
|
$x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 16 x + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.45 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.46 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.47 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.48 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{3} + 16 x + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{6}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{6}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.49 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.62g2.50 |
|
$x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 10$ |
$C_2^6:(C_2\times A_4)$ (as 16T1299) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[47, 42, 32, 16, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 3, 7, 15, 31]$ |