\(x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x + 10\)
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $62$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$:
|
$C_1$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[3, 4, \frac{17}{4}, \frac{17}{4}]$ |
Visible Swan slopes: | $[2,3,\frac{13}{4},\frac{13}{4}]$ |
Means: | $\langle1, 2, \frac{21}{8}, \frac{47}{16}\rangle$ |
Rams: | $(2, 4, 5, 5)$ |
Jump set: | $[1, 3, 7, 15, 31]$ |
Roots of unity: | $2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Galois degree: |
$1536$
|
Galois group: |
$C_2^6:(C_2\times A_4)$ (as 16T1299)
|
Inertia group: |
$C_2^6:C_4$ (as 16T581)
|
Wild inertia group: |
$C_2^6:C_4$
|
Galois unramified degree: |
$6$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]$
|
Galois Swan slopes: |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]$
|
Galois mean slope: |
$4.0859375$
|
Galois splitting model: |
$x^{16} - 48 x^{13} + 252 x^{12} - 1008 x^{11} + 3168 x^{10} - 10656 x^{9} + 30258 x^{8} - 64608 x^{7} + 108576 x^{6} - 132624 x^{5} + 140916 x^{4} - 121680 x^{3} + 105408 x^{2} - 70848 x + 34569$
|