Properties

Label 2.1.16.60j
Base 2.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(60\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + 8 b_{47} x^{15} + 8 b_{46} x^{14} + 8 a_{45} x^{13} + 8 b_{44} x^{12} + 8 b_{42} x^{10} + 4 b_{24} x^{8} + 8 b_{36} x^{4} + 16 b_{49} x + 8 c_{32} + 16 c_{48} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $60$
Artin slopes: $[3,4,\frac{49}{12},\frac{49}{12}]$
Swan slopes: $[2,3,\frac{37}{12},\frac{37}{12}]$
Means: $\langle1,2,\frac{61}{24},\frac{45}{16}\rangle$
Rams: $(2,4,\frac{13}{3},\frac{13}{3})$
Field count: $128$ (complete)
Ambiguity: $4$
Mass: $128$
Absolute Mass: $128$

Diagrams

Varying

Indices of inseparability: $[45,42,32,16,0]$ (show 64), $[45,45,32,16,0]$ (show 64)
Associated inertia: $[1,1,1]$
Jump Set: $[1,3,7,15,31]$

Galois groups and Hidden Artin slopes

Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.

Fields


Showing 1-50 of 64

Next   displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.60j1.9 $x^{16} + 8 x^{13} + 8 x^{10} + 2$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.10 $x^{16} + 8 x^{13} + 8 x^{10} + 18$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.11 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 2$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.12 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 18$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.13 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 2$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.14 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 18$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.15 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 2$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.16 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 18$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.25 $x^{16} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.26 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.27 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.28 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.29 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.30 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.31 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.32 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.41 $x^{16} + 8 x^{13} + 8 x^{10} + 10$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.42 $x^{16} + 8 x^{13} + 8 x^{10} + 26$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.43 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 10$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.44 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 26$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.45 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 10$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.46 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 26$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.47 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 10$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.48 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 26$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.57 $x^{16} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.58 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.59 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.60 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.61 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.62 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.63 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.64 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ $C_2^6:D_{12}$ (as 16T1313) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.73 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 2$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.74 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 18$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.75 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 2$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $1536$ $1$ not computed not computed not computed not computed $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.76 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 18$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $1536$ $1$ not computed not computed not computed not computed $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.77 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 2$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.78 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 18$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.79 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 2$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $1536$ $1$ not computed not computed not computed not computed $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.80 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 18$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $1536$ $1$ not computed not computed not computed not computed $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.89 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 2$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.90 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.91 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 2$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.92 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.93 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 2$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.94 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.95 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 2$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.96 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ $C_2^6:(C_2\times S_4)$ (as 16T1519) $3072$ $1$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.105 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 10$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.106 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 26$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $1536$ $1$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
Next   displayed columns for results