Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.16.60j1.9 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 2$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.10 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 18$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.11 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 2$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.12 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 18$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.13 |
|
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 2$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.14 |
|
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 18$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.15 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 2$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.16 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 18$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.25 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.26 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.27 |
|
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.28 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.29 |
|
$x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.30 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.31 |
|
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.32 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 2$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.41 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 10$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.42 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 26$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.43 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 10$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.44 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 26$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.45 |
|
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 10$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.46 |
|
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 26$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.47 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 10$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.48 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 26$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.57 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.58 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.59 |
|
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.60 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 8 x^{4} + 10$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.61 |
|
$x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.62 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.63 |
|
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.64 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 10$ |
$C_2^6:D_{12}$ (as 16T1313) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.73 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 2$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.74 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 18$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.75 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 2$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.76 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 18$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.77 |
|
$x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 2$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.78 |
|
$x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 18$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.79 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 2$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.80 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 18$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.89 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 2$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.90 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.91 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 2$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.92 |
|
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.93 |
|
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 2$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.94 |
|
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.95 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 2$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.96 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ |
$C_2^6:(C_2\times S_4)$ (as 16T1519) |
$3072$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.105 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 10$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.60j1.106 |
|
$x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 26$ |
$C_2^6:(C_4\times S_3)$ (as 16T1300) |
$1536$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[45, 42, 32, 16, 0]$ |
$[1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |