\(x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 10\)
    
    
    
         
    
    
         
    
  | 
  | Base field: |   $\Q_{2}$
       | 
| Degree $d$: |  $16$ | 
      | Ramification index $e$: |  $16$ | 
      | Residue field degree $f$: |  $1$ | 
      | Discriminant exponent $c$: |  $60$ | 
      | Discriminant root field: |  $\Q_{2}$ | 
      | Root number: |  $-1$ | 
        | $\Aut(K/\Q_{2})$:
             |  
      $C_1$ | 
    
      | This field is not Galois over $\Q_{2}.$ | 
      | Visible Artin slopes: | $[3, 4, \frac{49}{12}, \frac{49}{12}]$ | 
      | Visible Swan slopes: | $[2,3,\frac{37}{12},\frac{37}{12}]$ | 
      | Means: | $\langle1, 2, \frac{61}{24}, \frac{45}{16}\rangle$ | 
      | Rams: | $(2, 4, \frac{13}{3}, \frac{13}{3})$ | 
      | Jump set: | $[1, 3, 7, 15, 31]$ | 
      | Roots of unity: | $2$ | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
      
    
  
  | Galois degree: | 
      $3072$
     | 
  | Galois group: | 
      $C_2^6:(C_2\times S_4)$ (as 16T1519)
     | 
  | Inertia group: | 
      $C_2^6:(C_2\times A_4)$ (as 16T1299)
     | 
  | Wild inertia group: | 
    not computed
     | 
  | Galois unramified degree: | 
    $2$
     | 
  | Galois tame degree: | 
    $3$
     | 
  | Galois Artin slopes: | 
    $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]$
     | 
| Galois Swan slopes: | 
    $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]$
     | 
  | Galois mean slope: | 
    $3.9309895833333335$
     | 
  | Galois splitting model: | 
    $x^{16} - 56 x^{13} - 192 x^{12} - 624 x^{11} + 216 x^{10} + 17424 x^{9} + 71100 x^{8} + 207376 x^{7} + 282816 x^{6} + 10800 x^{5} - 691976 x^{4} - 2052192 x^{3} - 931728 x^{2} - 511632 x + 26766$
    
    
    
         
    
    
         
    
 |