Properties

Label 2.1.16.56l
Base 2.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(56\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + 8 b_{47} x^{15} + 8 b_{46} x^{14} + 8 b_{45} x^{13} + 4 b_{28} x^{12} + 8 b_{43} x^{11} + 8 b_{42} x^{10} + 8 a_{41} x^{9} + 2 a_{8} x^{8} + 8 b_{38} x^{6} + 4 a_{20} x^{4} + 8 b_{34} x^{2} + 4 c_{16} + 8 c_{32} + 16 c_{48} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $56$
Artin slopes: $[2,3,4,4]$
Swan slopes: $[1,2,3,3]$
Means: $\langle\frac{1}{2},\frac{5}{4},\frac{17}{8},\frac{41}{16}\rangle$
Rams: $(1,3,7,7)$
Field count: $384$ (complete)
Ambiguity: $8$
Mass: $256$
Absolute Mass: $256$

Diagrams

Varying

Indices of inseparability: $[41,34,20,8,0]$ (show 128), $[41,36,20,8,0]$ (show 256)
Associated inertia: $[1,1,2]$ (show 256), $[1,1,3]$ (show 128)
Jump Set: $[1,2,4,8,32]$ (show 192), $[1,2,4,32,48]$ (show 48), $[1,2,25,41,57]$ (show 8), $[1,7,15,31,47]$ (show 96), $[1,9,18,34,50]$ (show 2), $[1,9,27,43,59]$ (show 16), $[1,9,29,45,61]$ (show 8), $[1,9,31,47,63]$ (show 4), $[1,9,32,48,64]$ (show 2), $[1,11,25,41,57]$ (show 8)

Galois groups and Hidden Artin slopes

Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.

Fields


Showing 1-50 of 96

Next   displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.56l1.65 $x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.66 $x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.67 $x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.68 $x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.69 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.70 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.71 $x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.72 $x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.73 $x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T686) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.74 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T686) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.75 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T686) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.76 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T686) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.77 $x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.78 $x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.79 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.80 $x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.81 $x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.82 $x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.83 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.84 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.85 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.86 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.87 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.88 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.89 $x^{16} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T686) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.90 $x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T686) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.91 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T686) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.92 $x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T686) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.93 $x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.94 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.95 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.96 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.97 $x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.98 $x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.99 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.100 $x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T921) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.101 $x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.102 $x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.103 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.104 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.105 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.106 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.107 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.108 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ $C_2^6.D_4$ (as 16T900) $512$ $2$ $[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,1,2,2,\frac{5}{2},3,3]^{4}$ $[2,3,\frac{7}{2}]^{4}$ $[1,2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.109 $x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.110 $x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.111 $x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.112 $x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.113 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
2.1.16.56l1.114 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ $C_2^4.D_8$ (as 16T705) $256$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ $[1,2,2,\frac{5}{2},3,3]^{4}$ $[3,\frac{7}{2}]^{4}$ $[2,\frac{5}{2}]^{4}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 7, 15, 31, 47]$
Next   displayed columns for results