Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
| Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.56l1.65 |
16 |
$x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.66 |
16 |
$x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.67 |
16 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.68 |
16 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.69 |
16 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.70 |
16 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.71 |
16 |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.72 |
16 |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.73 |
16 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T686) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.74 |
16 |
$x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T686) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.75 |
16 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T686) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.76 |
16 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T686) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.77 |
32 |
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.78 |
32 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.79 |
32 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.80 |
32 |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.81 |
32 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.82 |
32 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.83 |
32 |
$x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.84 |
32 |
$x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.85 |
32 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.86 |
32 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.87 |
32 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.88 |
32 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.89 |
16 |
$x^{16} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T686) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.90 |
16 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T686) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.91 |
16 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T686) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.92 |
16 |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T686) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.93 |
32 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.94 |
32 |
$x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.95 |
32 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.96 |
32 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.97 |
32 |
$x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.98 |
32 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.99 |
32 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.100 |
32 |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T921) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.101 |
32 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.102 |
32 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.103 |
32 |
$x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.104 |
32 |
$x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.105 |
32 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.106 |
32 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.107 |
32 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.108 |
32 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3]^{4}$ |
$[2,3,\frac{7}{2}]^{4}$ |
$[1,2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.109 |
16 |
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.110 |
16 |
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.111 |
16 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.112 |
16 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.113 |
16 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.114 |
16 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$C_2^4.D_8$ (as 16T705) |
$256$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |