| Label |
$n$ |
Polynomial |
$p$ |
$f$ |
$e$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible Artin slopes |
Visible Swan slopes |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
$\#\Aut(K/\Q_p)$ |
Unram. Ext. |
Eisen. Poly. |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.56l1.65 |
$16$ |
$x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.66 |
$16$ |
$x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.67 |
$16$ |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.68 |
$16$ |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.69 |
$16$ |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.70 |
$16$ |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.71 |
$16$ |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.72 |
$16$ |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.109 |
$16$ |
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.110 |
$16$ |
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.111 |
$16$ |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.112 |
$16$ |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.113 |
$16$ |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.114 |
$16$ |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.115 |
$16$ |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l1.116 |
$16$ |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$2$ |
$1$ |
$16$ |
$56$ |
$C_2^4.D_8$ (as 16T705) |
$4$ |
$1$ |
$[2, 3, 4, 4]$ |
$[1,2,3,3]$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{4}$ |
$[1,2,2,\frac{5}{2},3,3]^{4}$ |
$[3,\frac{7}{2}]^{4}$ |
$[2,\frac{5}{2}]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 18$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 7, 15, 31, 47]$ |