Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
| Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.56l2.9 |
|
$x^{16} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.10 |
|
$x^{16} + 8 x^{15} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.11 |
|
$x^{16} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.12 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.13 |
|
$x^{16} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.14 |
|
$x^{16} + 8 x^{15} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.15 |
|
$x^{16} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.16 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |