Defining polynomial
$x^{16} + 8 b_{47} x^{15} + 4 a_{30} x^{14} + 8 b_{45} x^{13} + 4 b_{28} x^{12} + 8 b_{43} x^{11} + 8 b_{41} x^{9} + \left(2 a_{8} + 8 c_{40}\right) x^{8} + 8 a_{39} x^{7} + 8 b_{38} x^{6} + 4 a_{20} x^{4} + 8 b_{34} x^{2} + 4 c_{16} + 8 c_{32} + 16 c_{48} + 2$ |
Invariants
Residue field characteristic: | $2$ |
Degree: | $16$ |
Base field: | $\Q_{2}$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $54$ |
Artin slopes: | $[2,3,\frac{7}{2},4]$ |
Swan slopes: | $[1,2,\frac{5}{2},3]$ |
Means: | $\langle\frac{1}{2},\frac{5}{4},\frac{15}{8},\frac{39}{16}\rangle$ |
Rams: | $(1,3,5,9)$ |
Field count: | $432$ (complete) |
Ambiguity: | $16$ |
Mass: | $128$ |
Absolute Mass: | $128$ |
Diagrams
Varying
Indices of inseparability: | $[39,30,20,8,0]$ |
Associated inertia: | $[1,1,1,1]$ |
Jump Set: | $[1,2,4,8,32]$ (show 216), $[1,2,15,31,47]$ (show 96), $[1,7,14,28,44]$ (show 5), $[1,7,14,32,48]$ (show 60), $[1,7,25,41,57]$ (show 20), $[1,7,27,43,59]$ (show 12), $[1,7,29,45,61]$ (show 12), $[1,7,31,47,63]$ (show 6), $[1,7,32,48,64]$ (show 5) |
Galois groups and Hidden Artin slopes
Select desired size of Galois group.
Fields
Showing all 5
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
2.1.16.54o1.105 | $x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 18$ | $C_4^2:C_2$ (as 16T17) | $32$ | $8$ | $[\ ]^{2}$ | $[39, 30, 20, 8, 0]$ | $[1, 1, 1, 1]$ | $[1, 7, 32, 48, 64]$ |
2.1.16.54o1.121 | $x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 18$ | $C_4 \times D_4$ (as 16T19) | $32$ | $8$ | $[\ ]^{2}$ | $[39, 30, 20, 8, 0]$ | $[1, 1, 1, 1]$ | $[1, 7, 32, 48, 64]$ |
2.1.16.54o1.127 | $x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 18$ | $C_4 \times D_4$ (as 16T19) | $32$ | $8$ | $[\ ]^{2}$ | $[39, 30, 20, 8, 0]$ | $[1, 1, 1, 1]$ | $[1, 7, 32, 48, 64]$ |
2.1.16.54o1.143 | $x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 18$ | $C_2^2 : C_4$ (as 16T10) | $16$ | $16$ | $[\ ]$ | $[39, 30, 20, 8, 0]$ | $[1, 1, 1, 1]$ | $[1, 7, 32, 48, 64]$ |
2.1.16.54o1.152 | $x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 18$ | $C_2^2 : C_4$ (as 16T10) | $16$ | $16$ | $[\ ]$ | $[39, 30, 20, 8, 0]$ | $[1, 1, 1, 1]$ | $[1, 7, 32, 48, 64]$ |