Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.16.54o1.101 |
16 |
$x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 2$ |
$C_2^2.D_4$ (as 16T54) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |
2.1.16.54o1.102 |
6 |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 2$ |
$C_2^2.D_4$ (as 16T37) |
$32$ |
$4$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |
2.1.16.54o1.108 |
16 |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 2$ |
$C_2^2.D_4$ (as 16T54) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |
2.1.16.54o1.117 |
4 |
$x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 2$ |
$C_4^2:C_2$ (as 16T30) |
$32$ |
$4$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |
2.1.16.54o1.118 |
8 |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^2\wr C_2$ (as 16T39) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |
2.1.16.54o1.122 |
8 |
$x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^2\wr C_2$ (as 16T39) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |
2.1.16.54o1.123 |
6 |
$x^{16} + 4 x^{14} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^2.D_4$ (as 16T37) |
$32$ |
$4$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |
2.1.16.54o1.124 |
8 |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4:D_4$ (as 16T34) |
$32$ |
$4$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |
2.1.16.54o1.139 |
16 |
$x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^2.D_4$ (as 16T54) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |
2.1.16.54o1.140 |
12 |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4:D_4$ (as 16T43) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |
2.1.16.54o1.149 |
12 |
$x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4:D_4$ (as 16T43) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |
2.1.16.54o1.150 |
16 |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^2.D_4$ (as 16T54) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 29, 45, 61]$ |