Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.16.42b1.73 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.74 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.75 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.76 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.77 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ |
$[2,2,2,\frac{5}{2},3,3]^{6}$ |
$[1,1,1,\frac{3}{2},2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.78 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ |
$[2,2,2,\frac{5}{2},3,3]^{6}$ |
$[1,1,1,\frac{3}{2},2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.79 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ |
$[2,2,2,\frac{5}{2},3,3]^{6}$ |
$[1,1,1,\frac{3}{2},2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.80 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x^{5} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ |
$[2,2,2,\frac{5}{2},3,3]^{6}$ |
$[1,1,1,\frac{3}{2},2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.81 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x + 6$ |
$C_2\wr A_4$ (as 16T427) |
$192$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,2,\frac{5}{2}]^{3}$ |
$[3,3]^{3}$ |
$[2,2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.82 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x + 6$ |
$C_2\wr A_4$ (as 16T427) |
$192$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,2,\frac{5}{2}]^{3}$ |
$[3,3]^{3}$ |
$[2,2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.83 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x + 6$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.84 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 8 x + 6$ |
$C_2^4:(C_2\times A_4)$ (as 16T721) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.85 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$(C_2^3\times C_4):A_4$ (as 16T717) |
$384$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.86 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$(C_2^3\times C_4):A_4$ (as 16T717) |
$384$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.87 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{3} + 8 x + 6$ |
$C_2^5:A_4$ (as 16T722) |
$384$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.88 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{3} + 8 x + 6$ |
$C_2^5:A_4$ (as 16T722) |
$384$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.89 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{3} + 8 x + 6$ |
$(C_2^2\times D_4):A_4$ (as 16T720) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.90 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 8 x^{3} + 8 x + 6$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.91 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 8 x + 6$ |
$(C_2^2\times C_4):A_4$ (as 16T426) |
$192$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,2,\frac{5}{2}]^{3}$ |
$[3,3]^{3}$ |
$[2,2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.92 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 8 x + 6$ |
$(C_2^2\times C_4):A_4$ (as 16T426) |
$192$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,2,\frac{5}{2}]^{3}$ |
$[3,3]^{3}$ |
$[2,2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.93 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ |
$[2,2,2,\frac{5}{2},3,3]^{6}$ |
$[1,1,1,\frac{3}{2},2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.94 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ |
$[2,2,2,\frac{5}{2},3,3]^{6}$ |
$[1,1,1,\frac{3}{2},2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.95 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ |
$[2,2,2,\frac{5}{2},3,3]^{6}$ |
$[1,1,1,\frac{3}{2},2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.96 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ |
$[2,2,2,\frac{5}{2},3,3]^{6}$ |
$[1,1,1,\frac{3}{2},2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.97 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.98 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.99 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.100 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x^{5} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.101 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x + 6$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.102 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x + 6$ |
$(C_2^2\times C_4):A_4$ (as 16T426) |
$192$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,2,\frac{5}{2}]^{3}$ |
$[3,3]^{3}$ |
$[2,2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.103 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x + 6$ |
$(C_2^2\times C_4):A_4$ (as 16T426) |
$192$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,2,\frac{5}{2}]^{3}$ |
$[3,3]^{3}$ |
$[2,2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.104 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 8 x + 6$ |
$C_2^5:A_4$ (as 16T722) |
$384$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.105 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 8 x + 6$ |
$C_2^5:A_4$ (as 16T722) |
$384$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.106 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$(C_2^2\times D_4):A_4$ (as 16T720) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.107 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{3} + 8 x + 6$ |
$C_2^4:(C_2\times A_4)$ (as 16T721) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.108 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{3} + 8 x + 6$ |
$(C_2^3\times C_4):A_4$ (as 16T717) |
$384$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.109 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x^{3} + 8 x + 6$ |
$(C_2^3\times C_4):A_4$ (as 16T717) |
$384$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.110 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 8 x^{3} + 8 x + 6$ |
$C_2\wr A_4$ (as 16T427) |
$192$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,2,\frac{5}{2}]^{3}$ |
$[3,3]^{3}$ |
$[2,2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.111 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 8 x^{3} + 8 x + 6$ |
$C_2\wr A_4$ (as 16T427) |
$192$ |
$4$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,2,\frac{5}{2}]^{3}$ |
$[3,3]^{3}$ |
$[2,2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.112 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 8 x + 6$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,2,2,\frac{5}{2}]^{6}$ |
$[3,3]^{6}$ |
$[2,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.113 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 6$ |
$D_4\times A_4$ (as 16T179) |
$96$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2}]^{3}$ |
$[3]^{3}$ |
$[2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.114 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{8} + 6$ |
$D_4\times A_4$ (as 16T179) |
$96$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2}]^{3}$ |
$[3]^{3}$ |
$[2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.115 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{5} + 6$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 2, 2, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,2,\frac{5}{2}]^{6}$ |
$[2,2,3]^{6}$ |
$[1,1,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.116 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 6$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 2, 2, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,2,\frac{5}{2}]^{6}$ |
$[2,2,3]^{6}$ |
$[1,1,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.117 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{3} + 6$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 2, 2, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,2,\frac{5}{2}]^{6}$ |
$[2,2,3]^{6}$ |
$[1,1,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.118 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{8} + 8 x^{3} + 6$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 2, 2, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,2,\frac{5}{2}]^{6}$ |
$[2,2,3]^{6}$ |
$[1,1,2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.119 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{5} + 8 x^{3} + 6$ |
$D_4.A_4$ (as 16T180) |
$96$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2}]^{3}$ |
$[3]^{3}$ |
$[2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.120 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 8 x^{3} + 6$ |
$D_4.A_4$ (as 16T180) |
$96$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2}]^{3}$ |
$[3]^{3}$ |
$[2]^{3}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.121 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{6}$ |
$[2,2,2,\frac{5}{2},\frac{5}{2},3]^{6}$ |
$[1,1,1,\frac{3}{2},\frac{3}{2},2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
2.1.16.42b1.122 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{8} + 8 x + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{6}$ |
$[1,1,1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{6}$ |
$[2,2,2,\frac{5}{2},\frac{5}{2},3]^{6}$ |
$[1,1,1,\frac{3}{2},\frac{3}{2},2]^{6}$ |
$[27, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |