Properties

Label 2.1.16.42b
Base 2.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(42\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + 4 b_{31} x^{15} + 2 a_{14} x^{14} + 4 b_{29} x^{13} + 2 b_{12} x^{12} + 4 a_{27} x^{11} + \left(2 b_{8} + 8 c_{40}\right) x^{8} + 8 b_{39} x^{7} + 8 b_{37} x^{5} + 8 b_{35} x^{3} + 8 b_{33} x + 4 c_{16} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $42$
Artin slopes: $[2,2,2,\frac{7}{2}]$
Swan slopes: $[1,1,1,\frac{5}{2}]$
Means: $\langle\frac{1}{2},\frac{3}{4},\frac{7}{8},\frac{27}{16}\rangle$
Rams: $(1,1,1,13)$
Field count: $544$ (complete)
Ambiguity: $4$
Mass: $256$
Absolute Mass: $256$

Diagrams

Varying

Indices of inseparability: $[27,14,12,8,0]$ (show 144), $[27,14,12,12,0]$ (show 128), $[27,14,14,8,0]$ (show 128), $[27,14,14,14,0]$ (show 144)
Associated inertia: $[3,1]$ (show 144), $[4,1]$ (show 144), $[7,1]$ (show 256)
Jump Set: $[1,2,4,15,31]$ (show 128), $[1,2,7,14,32]$ (show 72), $[1,2,7,23,39]$ (show 72), $[1,3,6,15,31]$ (show 128), $[1,3,7,14,32]$ (show 72), $[1,3,7,23,39]$ (show 72)

Galois groups and Hidden Artin slopes

Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.

Fields


Showing 1-50 of 72

Next   displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.42b1.73 $x^{16} + 2 x^{14} + 4 x^{11} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ not computed not computed not computed not computed $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.74 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ not computed not computed not computed not computed $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.75 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ not computed not computed not computed not computed $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.76 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ not computed not computed not computed not computed $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.77 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ $[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ $[2,2,2,\frac{5}{2},3,3]^{6}$ $[1,1,1,\frac{3}{2},2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.78 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ $[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ $[2,2,2,\frac{5}{2},3,3]^{6}$ $[1,1,1,\frac{3}{2},2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.79 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ $[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ $[2,2,2,\frac{5}{2},3,3]^{6}$ $[1,1,1,\frac{3}{2},2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.80 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x^{5} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ $[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ $[2,2,2,\frac{5}{2},3,3]^{6}$ $[1,1,1,\frac{3}{2},2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.81 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x + 6$ $C_2\wr A_4$ (as 16T427) $192$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[3,3]^{3}$ $[2,2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.82 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x + 6$ $C_2\wr A_4$ (as 16T427) $192$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[3,3]^{3}$ $[2,2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.83 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T716) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.84 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T721) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.85 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 8 x + 6$ $(C_2^3\times C_4):A_4$ (as 16T717) $384$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.86 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ $(C_2^3\times C_4):A_4$ (as 16T717) $384$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.87 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{3} + 8 x + 6$ $C_2^5:A_4$ (as 16T722) $384$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.88 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{3} + 8 x + 6$ $C_2^5:A_4$ (as 16T722) $384$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.89 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{3} + 8 x + 6$ $(C_2^2\times D_4):A_4$ (as 16T720) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.90 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 8 x^{3} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T716) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.91 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 8 x + 6$ $(C_2^2\times C_4):A_4$ (as 16T426) $192$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[3,3]^{3}$ $[2,2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.92 $x^{16} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 8 x + 6$ $(C_2^2\times C_4):A_4$ (as 16T426) $192$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[3,3]^{3}$ $[2,2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.93 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ $[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ $[2,2,2,\frac{5}{2},3,3]^{6}$ $[1,1,1,\frac{3}{2},2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.94 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ $[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ $[2,2,2,\frac{5}{2},3,3]^{6}$ $[1,1,1,\frac{3}{2},2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.95 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ $[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ $[2,2,2,\frac{5}{2},3,3]^{6}$ $[1,1,1,\frac{3}{2},2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.96 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ $[2, 2, 2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,1,\frac{3}{2},2,2,\frac{5}{2}]^{6}$ $[2,2,2,\frac{5}{2},3,3]^{6}$ $[1,1,1,\frac{3}{2},2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.97 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ not computed not computed not computed not computed $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.98 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ not computed not computed not computed not computed $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.99 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ not computed not computed not computed not computed $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.100 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x^{5} + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ not computed not computed not computed not computed $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.101 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T716) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.102 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x + 6$ $(C_2^2\times C_4):A_4$ (as 16T426) $192$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[3,3]^{3}$ $[2,2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.103 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x + 6$ $(C_2^2\times C_4):A_4$ (as 16T426) $192$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[3,3]^{3}$ $[2,2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.104 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 8 x + 6$ $C_2^5:A_4$ (as 16T722) $384$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.105 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 8 x + 6$ $C_2^5:A_4$ (as 16T722) $384$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.106 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 8 x + 6$ $(C_2^2\times D_4):A_4$ (as 16T720) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.107 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{3} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T721) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.108 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{3} + 8 x + 6$ $(C_2^3\times C_4):A_4$ (as 16T717) $384$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.109 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{7} + 8 x^{3} + 8 x + 6$ $(C_2^3\times C_4):A_4$ (as 16T717) $384$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.110 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 8 x^{3} + 8 x + 6$ $C_2\wr A_4$ (as 16T427) $192$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[3,3]^{3}$ $[2,2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.111 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 8 x^{3} + 8 x + 6$ $C_2\wr A_4$ (as 16T427) $192$ $4$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[3,3]^{3}$ $[2,2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.112 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T716) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[3,3]^{6}$ $[2,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.113 $x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 6$ $D_4\times A_4$ (as 16T179) $96$ $2$ $[2, 2, 2, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,\frac{5}{2}]^{3}$ $[3]^{3}$ $[2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.114 $x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{8} + 6$ $D_4\times A_4$ (as 16T179) $96$ $2$ $[2, 2, 2, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,\frac{5}{2}]^{3}$ $[3]^{3}$ $[2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.115 $x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{5} + 6$ $(D_4\times C_2^3):A_4$ (as 16T1037) $768$ $2$ $[2, 2, 2, 2, 2, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,2,\frac{5}{2}]^{6}$ $[2,2,3]^{6}$ $[1,1,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.116 $x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 6$ $(D_4\times C_2^3):A_4$ (as 16T1037) $768$ $2$ $[2, 2, 2, 2, 2, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,2,\frac{5}{2}]^{6}$ $[2,2,3]^{6}$ $[1,1,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.117 $x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{3} + 6$ $(D_4\times C_2^3):A_4$ (as 16T1037) $768$ $2$ $[2, 2, 2, 2, 2, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,2,\frac{5}{2}]^{6}$ $[2,2,3]^{6}$ $[1,1,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.118 $x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{8} + 8 x^{3} + 6$ $(D_4\times C_2^3):A_4$ (as 16T1037) $768$ $2$ $[2, 2, 2, 2, 2, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,2,\frac{5}{2}]^{6}$ $[2,2,3]^{6}$ $[1,1,2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.119 $x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{5} + 8 x^{3} + 6$ $D_4.A_4$ (as 16T180) $96$ $2$ $[2, 2, 2, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,\frac{5}{2}]^{3}$ $[3]^{3}$ $[2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.120 $x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{8} + 8 x^{5} + 8 x^{3} + 6$ $D_4.A_4$ (as 16T180) $96$ $2$ $[2, 2, 2, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,\frac{5}{2}]^{3}$ $[3]^{3}$ $[2]^{3}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.121 $x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ $[2, 2, 2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{6}$ $[2,2,2,\frac{5}{2},\frac{5}{2},3]^{6}$ $[1,1,1,\frac{3}{2},\frac{3}{2},2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.42b1.122 $x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 8 x^{8} + 8 x + 6$ $C_2\wr C_2^3:C_3$ (as 16T1658) $6144$ $2$ $[2, 2, 2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{6}$ $[1,1,1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{6}$ $[2,2,2,\frac{5}{2},\frac{5}{2},3]^{6}$ $[1,1,1,\frac{3}{2},\frac{3}{2},2]^{6}$ $[27, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
Next   displayed columns for results