\(x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 8 x^{5} + 8 x^{3} + 8 x + 6\)
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $42$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$:
|
$C_2^2$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[2, 2, 2, \frac{7}{2}]$ |
Visible Swan slopes: | $[1,1,1,\frac{5}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{27}{16}\rangle$ |
Rams: | $(1, 1, 1, 13)$ |
Jump set: | $[1, 3, 7, 14, 32]$ |
Roots of unity: | $2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Galois degree: |
$192$
|
Galois group: |
$C_2\wr A_4$ (as 16T427)
|
Inertia group: |
$C_2\wr C_2^2$ (as 16T127)
|
Wild inertia group: |
$C_2\wr C_2^2$
|
Galois unramified degree: |
$3$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 2, 3, 3, \frac{7}{2}]$
|
Galois Swan slopes: |
$[1,1,1,2,2,\frac{5}{2}]$
|
Galois mean slope: |
$3.09375$
|
Galois splitting model: |
$x^{16} + 4 x^{14} + 16 x^{12} - 20 x^{10} + 28 x^{8} - 32 x^{6} + 16 x^{4} - 8 x^{2} + 4$
|