Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.16.42b4.73 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 6$ |
$C_2^4.D_4$ (as 16T230) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.74 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 6$ |
$C_2^4.D_4$ (as 16T230) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.75 |
4 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 6$ |
$C_2^4.D_4$ (as 16T319) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.76 |
4 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 6$ |
$C_4^2.D_4$ (as 16T361) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.77 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 6$ |
$C_4^2.D_4$ (as 16T397) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.78 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 6$ |
$C_4^2.D_4$ (as 16T397) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.79 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{3} + 6$ |
$C_2^4.D_4$ (as 16T254) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.80 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{3} + 6$ |
$C_2^4.D_4$ (as 16T254) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.81 |
4 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{3} + 6$ |
$C_2^4.D_4$ (as 16T297) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.82 |
4 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x^{3} + 6$ |
$C_4^2.D_4$ (as 16T387) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.83 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 6$ |
$C_4^2.D_4$ (as 16T398) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.84 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 6$ |
$C_4^2.D_4$ (as 16T398) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.85 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.86 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.87 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.88 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.89 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.90 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.91 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.92 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.93 |
4 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 6$ |
$C_2^4.D_4$ (as 16T297) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.94 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 6$ |
$C_2^4.D_4$ (as 16T254) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.95 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 6$ |
$C_2^4.D_4$ (as 16T254) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.96 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 6$ |
$C_4^2.D_4$ (as 16T398) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.97 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 6$ |
$C_4^2.D_4$ (as 16T398) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.98 |
4 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 6$ |
$C_4^2.D_4$ (as 16T387) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.99 |
4 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{3} + 6$ |
$C_2^4.D_4$ (as 16T319) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.100 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{3} + 6$ |
$C_2^4.D_4$ (as 16T230) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.101 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{3} + 6$ |
$C_2^4.D_4$ (as 16T230) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.102 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x^{3} + 6$ |
$C_4^2.D_4$ (as 16T397) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.103 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x^{3} + 6$ |
$C_4^2.D_4$ (as 16T397) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.104 |
4 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 6$ |
$C_4^2.D_4$ (as 16T361) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.105 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.106 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.107 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.108 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.109 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.110 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.111 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.112 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.113 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.114 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.115 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.116 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.117 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.118 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.119 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.120 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 6$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.121 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 6$ |
$D_4:C_2^3.D_4$ (as 16T918) |
$512$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[3,3,3]^{4}$ |
$[2,2,2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.122 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 6$ |
$D_4:C_2^3.D_4$ (as 16T918) |
$512$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[3,3,3]^{4}$ |
$[2,2,2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |