Defining polynomial over unramified subextension
| $x^{8} + 199d_{0}$ |
Invariants
| Residue field characteristic: | $199$ |
| Degree: | $16$ |
| Base field: | $\Q_{199}$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $14$ |
| Artin slopes: | $[\ ]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $5$ (complete) |
| Ambiguity: | $16$ |
| Mass: | $1$ |
| Absolute Mass: | $1/2$ |
Varying
| Indices of inseparability: | $[0]$ |
| Associated inertia: | $[1]$ |
| Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Select desired size of Galois group.
Fields
Showing all 5
Download displayed columns for results| Label | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 199.2.8.14a1.1 | $( x^{2} + 193 x + 3 )^{8} + 199 x$ | $C_8.C_8$ (as 16T124) | $64$ | $8$ | $[\ ]^{4}$ | $[0]$ | $[1]$ | undefined |
| 199.2.8.14a1.2 | $( x^{2} + 193 x + 3 )^{8} + 199$ | $D_{8}$ (as 16T13) | $16$ | $16$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 199.2.8.14a1.3 | $( x^{2} + 193 x + 3 )^{8} + 35820 x + 19900$ | $Q_{16}$ (as 16T14) | $16$ | $16$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 199.2.8.14a1.4 | $( x^{2} + 193 x + 3 )^{8} + 6567 x + 36019$ | $C_8.C_8$ (as 16T124) | $64$ | $8$ | $[\ ]^{4}$ | $[0]$ | $[1]$ | undefined |
| 199.2.8.14a1.5 | $( x^{2} + 193 x + 3 )^{8} + 1194 x + 39004$ | $C_8.C_4$ (as 16T49) | $32$ | $8$ | $[\ ]^{2}$ | $[0]$ | $[1]$ | undefined |