Defining polynomial over unramified subextension
| $x^{5} + d_{0} \pi$ |
Invariants
| Residue field characteristic: | $181$ |
| Degree: | $10$ |
| Base field: | $\Q_{181}(\sqrt{181})$ |
| Ramification index $e$: | $5$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $8$ |
| Absolute Artin slopes: | $[\ ]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $5$ (complete) |
| Ambiguity: | $10$ |
| Mass: | $1$ |
| Absolute Mass: | $1/4$ |
Varying
These invariants are all associated to absolute extensions of $\Q_{ 181 }$ within this relative family, not the relative extension.
| Galois group: | $C_2\times C_{10}$ |
| Hidden Artin slopes: | $[\ ]$ |
| Indices of inseparability: | $[0]$ |
| Associated inertia: | $[1]$ |
| Jump Set: | undefined |
Fields
Showing all 5
Download displayed columns for results| Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 181.2.10.18a1.2 | $( x^{2} + 177 x + 2 )^{10} + 181$ | $C_2\times C_{10}$ (as 20T3) | $20$ | $20$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 181.2.10.18a1.3 | $( x^{2} + 177 x + 2 )^{10} + 3077 x + 6154$ | $C_2\times C_{10}$ (as 20T3) | $20$ | $20$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 181.2.10.18a1.6 | $( x^{2} + 177 x + 2 )^{10} + 8688 x + 27693$ | $C_2\times C_{10}$ (as 20T3) | $20$ | $20$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 181.2.10.18a1.8 | $( x^{2} + 177 x + 2 )^{10} + 2172 x + 28598$ | $C_2\times C_{10}$ (as 20T3) | $20$ | $20$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 181.2.10.18a1.10 | $( x^{2} + 177 x + 2 )^{10} + 724 x + 32399$ | $C_2\times C_{10}$ (as 20T3) | $20$ | $20$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |