Properties

Label 13.1.8.7a1.2-1.2.1a
Base 13.1.8.7a1.2
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + d_{0} \pi$

Invariants

Residue field characteristic: $13$
Degree: $2$
Base field: 13.1.8.7a1.2
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $1$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/4$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 13 }$ within this relative family, not the relative extension.

Galois group: $C_{16}:C_4$
Hidden Artin slopes: $[\ ]^{4}$
Indices of inseparability: $[0]$
Associated inertia: $[4]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
13.1.16.15a1.2 $x^{16} + 26$ $C_{16}:C_4$ (as 16T125) $64$ $4$ $[\ ]_{16}^{4}$ $[\ ]_{16}^{4}$ $[\ ]^{4}$ $[\ ]^{4}$ $[0]$ $[4]$ $z^{15} + 3 z^{14} + 3 z^{13} + z^{12} + z^2 + 3 z + 3$ undefined
  displayed columns for results