Label |
$n$ |
Polynomial |
$p$ |
$e$ |
$f$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible slopes |
Slope content |
Ind. of Insep. |
Assoc. Inertia |
7.12.0.1 |
$12$ |
x12 + 2x8 + 5x7 + 3x6 + 2x5 + 4x4 + 5x2 + 3 |
$7$ |
$1$ |
$12$ |
$0$ |
$C_{12}$ (as 12T1) |
$12$ |
$1$ |
$[\ ]$ |
$[\ ]^{12}$ |
$[0]$ |
$[]$ |
7.12.6.1 |
$12$ |
x12 + 44x10 + 10x9 + 786x8 + 22x7 + 6899x6 - 3434x5 + 31050x4 - 28440x3 + 84557x2 - 48082x + 107648 |
$7$ |
$2$ |
$6$ |
$6$ |
$C_6\times C_2$ (as 12T2) |
$6$ |
$2$ |
$[\ ]$ |
$[\ ]_{2}^{6}$ |
$[0]$ |
$[1]$ |
7.12.6.2 |
$12$ |
x12 + 49x8 - 1715x6 + 9604x4 - 100842x2 + 352947 |
$7$ |
$2$ |
$6$ |
$6$ |
$C_{12}$ (as 12T1) |
$6$ |
$2$ |
$[\ ]$ |
$[\ ]_{2}^{6}$ |
$[0]$ |
$[1]$ |
7.12.8.1 |
$12$ |
x12 + 15x10 + 40x9 + 84x8 + 120x7 + 53x6 + 414x5 - 1293x4 - 1830x3 + 10968x2 - 13836x + 12004 |
$7$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$4$ |
$3$ |
$[\ ]$ |
$[\ ]_{3}^{4}$ |
$[0]$ |
$[1]$ |
7.12.8.2 |
$12$ |
x12 - 70x9 + 1519x6 - 4802x3 + 21609 |
$7$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$4$ |
$3$ |
$[\ ]$ |
$[\ ]_{3}^{4}$ |
$[0]$ |
$[1]$ |
7.12.8.3 |
$12$ |
x12 + 245x6 - 1372x3 + 7203 |
$7$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$4$ |
$3$ |
$[\ ]$ |
$[\ ]_{3}^{4}$ |
$[0]$ |
$[1]$ |
7.12.9.1 |
$12$ |
x12 + 24x11 + 216x10 + 880x9 + 1605x8 + 2064x7 + 6576x6 + 11904x5 + 8307x4 - 50984x3 - 57096x2 + 58128x + 76871 |
$7$ |
$4$ |
$3$ |
$9$ |
$D_4 \times C_3$ (as 12T14) |
$6$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{6}$ |
$[0]$ |
$[2]$ |
7.12.9.2 |
$12$ |
x12 - 42x8 - 1372 |
$7$ |
$4$ |
$3$ |
$9$ |
$D_4 \times C_3$ (as 12T14) |
$6$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{6}$ |
$[0]$ |
$[2]$ |
7.12.10.1 |
$12$ |
x12 + 36x11 + 558x10 + 4860x9 + 26055x8 + 88776x7 + 193010x6 + 266580x5 + 237645x4 + 153900x3 + 137808x2 + 210600x + 184108 |
$7$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
7.12.10.2 |
$12$ |
x12 + 14x6 - 245 |
$7$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
7.12.10.3 |
$12$ |
x12 - 1176 |
$7$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
7.12.10.4 |
$12$ |
x12 - 42x6 + 147 |
$7$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
7.12.10.5 |
$12$ |
x12 - 154x6 - 1421 |
$7$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
7.12.10.6 |
$12$ |
x12 - 28x6 - 98 |
$7$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
7.12.11.1 |
$12$ |
x12 + 14 |
$7$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$2$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}^{2}$ |
$[0]$ |
$[2]$ |
7.12.11.2 |
$12$ |
x12 + 7 |
$7$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$2$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}^{2}$ |
$[0]$ |
$[2]$ |
7.12.11.3 |
$12$ |
x12 + 28 |
$7$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$2$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}^{2}$ |
$[0]$ |
$[2]$ |
7.12.11.4 |
$12$ |
x12 + 42 |
$7$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$2$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}^{2}$ |
$[0]$ |
$[2]$ |
7.12.11.5 |
$12$ |
x12 + 21 |
$7$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$2$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}^{2}$ |
$[0]$ |
$[2]$ |
7.12.11.6 |
$12$ |
x12 + 35 |
$7$ |
$12$ |
$1$ |
$11$ |
$D_4 \times C_3$ (as 12T14) |
$2$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}^{2}$ |
$[0]$ |
$[2]$ |