| Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
| 3.1.36.102a |
$3$ |
$36$ |
$1$ |
$36$ |
$1$ |
$1$ |
$1$ |
$36$ |
$1$ |
$36$ |
$102$ |
$0$ |
$102$ |
$\Q_{3}$ |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[\frac{11}{8}, \frac{7}{3}]$ |
$\langle\frac{11}{12}, \frac{67}{36}\rangle$ |
$(\frac{11}{2}, 17)$ |
$x^{36} + 9 b_{71} x^{35} + 9 b_{70} x^{34} + 3 a_{33} x^{33} + 9 b_{68} x^{32} + 9 a_{67} x^{31} + (9 b_{48} + 27 c_{84}) x^{12} + 27 b_{83} x^{11} + 27 b_{82} x^{10} + 27 b_{80} x^8 + 27 b_{79} x^7 + 9 b_{42} x^6 + 27 b_{77} x^5 + 27 b_{76} x^4 + 9 b_{39} x^3 + 27 b_{74} x^2 + 27 b_{73} x + 3 d_{0}$ |
$6$ |
$0$ |
$19131876$ |
$19131876$ |
$0$ |
$0\%$ |
$2$ |
| 3.1.2.1a1.1-1.18.84a |
$3$ |
$18$ |
$2$ |
$36$ |
$1$ |
$1$ |
$1$ |
$18$ |
$2$ |
$36$ |
$84$ |
$1$ |
$84$ |
$\Q_{3}(\sqrt{3\cdot 2})$ |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[\frac{11}{4}, \frac{14}{3}]$ |
$\langle\frac{11}{6}, \frac{67}{18}\rangle$ |
$(\frac{11}{2}, 17)$ |
$x^{18} + b_{71} \pi^4 x^{17} + b_{70} \pi^4 x^{16} + a_{33} \pi^2 x^{15} + b_{68} \pi^4 x^{14} + a_{67} \pi^4 x^{13} + (c_{84} \pi^5 + b_{48} \pi^3) x^{12} + b_{83} \pi^5 x^{11} + b_{82} \pi^5 x^{10} + b_{80} \pi^5 x^8 + b_{79} \pi^5 x^7 + b_{42} \pi^3 x^6 + b_{77} \pi^5 x^5 + b_{76} \pi^5 x^4 + b_{39} \pi^3 x^3 + b_{74} \pi^5 x^2 + b_{73} \pi^5 x + d_{0} \pi$ |
$6$ |
$0$ |
$19131876$ |
$9565938$ |
$0$ |
$0\%$ |
$2$ |
| 3.1.2.1a1.2-1.18.84a |
$3$ |
$18$ |
$2$ |
$36$ |
$1$ |
$1$ |
$1$ |
$18$ |
$2$ |
$36$ |
$84$ |
$1$ |
$84$ |
$\Q_{3}(\sqrt{3})$ |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[\frac{11}{4}, \frac{14}{3}]$ |
$\langle\frac{11}{6}, \frac{67}{18}\rangle$ |
$(\frac{11}{2}, 17)$ |
$x^{18} + b_{71} \pi^4 x^{17} + b_{70} \pi^4 x^{16} + a_{33} \pi^2 x^{15} + b_{68} \pi^4 x^{14} + a_{67} \pi^4 x^{13} + (c_{84} \pi^5 + b_{48} \pi^3) x^{12} + b_{83} \pi^5 x^{11} + b_{82} \pi^5 x^{10} + b_{80} \pi^5 x^8 + b_{79} \pi^5 x^7 + b_{42} \pi^3 x^6 + b_{77} \pi^5 x^5 + b_{76} \pi^5 x^4 + b_{39} \pi^3 x^3 + b_{74} \pi^5 x^2 + b_{73} \pi^5 x + d_{0} \pi$ |
$6$ |
$0$ |
$19131876$ |
$9565938$ |
$0$ |
$0\%$ |
$2$ |
| 3.1.4.3a1.1-1.9.75a |
$3$ |
$9$ |
$4$ |
$36$ |
$1$ |
$1$ |
$1$ |
$9$ |
$4$ |
$36$ |
$75$ |
$3$ |
$75$ |
3.1.4.3a1.1 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[\frac{11}{2}, \frac{28}{3}]$ |
$\langle\frac{11}{3}, \frac{67}{9}\rangle$ |
$(\frac{11}{2}, 17)$ |
$x^9 + (b_{80} \pi^9 + b_{71} \pi^8) x^8 + (b_{79} \pi^9 + b_{70} \pi^8) x^7 + (b_{42} \pi^5 + a_{33} \pi^4) x^6 + (b_{77} \pi^9 + b_{68} \pi^8) x^5 + (b_{76} \pi^9 + a_{67} \pi^8) x^4 + (c_{84} \pi^{10} + b_{48} \pi^6 + b_{39} \pi^5) x^3 + (b_{83} \pi^{10} + b_{74} \pi^9) x^2 + (b_{82} \pi^{10} + b_{73} \pi^9) x + \pi$ |
$3$ |
$0$ |
$19131876$ |
$9565938$ |
$0$ |
$0\%$ |
$2$ |
| 3.1.4.3a1.2-1.9.75a |
$3$ |
$9$ |
$4$ |
$36$ |
$1$ |
$1$ |
$1$ |
$9$ |
$4$ |
$36$ |
$75$ |
$3$ |
$75$ |
3.1.4.3a1.2 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[\frac{11}{2}, \frac{28}{3}]$ |
$\langle\frac{11}{3}, \frac{67}{9}\rangle$ |
$(\frac{11}{2}, 17)$ |
$x^9 + (b_{80} \pi^9 + b_{71} \pi^8) x^8 + (b_{79} \pi^9 + b_{70} \pi^8) x^7 + (b_{42} \pi^5 + a_{33} \pi^4) x^6 + (b_{77} \pi^9 + b_{68} \pi^8) x^5 + (b_{76} \pi^9 + a_{67} \pi^8) x^4 + (c_{84} \pi^{10} + b_{48} \pi^6 + b_{39} \pi^5) x^3 + (b_{83} \pi^{10} + b_{74} \pi^9) x^2 + (b_{82} \pi^{10} + b_{73} \pi^9) x + \pi$ |
$3$ |
$0$ |
$19131876$ |
$9565938$ |
$0$ |
$0\%$ |
$2$ |
| 3.1.12.22a1.1-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.1 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.2-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.2 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.3-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.3 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.4-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.4 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.5-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.5 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.6-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.6 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.7-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.7 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.8-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.8 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.9-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.9 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.10-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.10 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.11-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.11 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.12-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.12 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.13-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.13 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.14-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.14 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.15-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.15 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.16-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.16 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.17-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.17 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.18-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.18 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.19-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.19 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.20-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.20 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.21-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.21 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.22-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.22 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.23-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.23 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.24-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.24 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.25-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.25 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.26-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.26 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.27-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.27 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.28-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.28 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.29-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.29 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.30-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.30 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.31-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.31 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.32-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.32 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.33-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.33 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.34-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.34 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.35-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.35 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.36-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.36 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.37-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.37 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.38-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.38 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.39-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.39 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.40-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.40 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.41-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.41 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.42-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.42 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.43-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.43 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.44-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.44 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.12.22a1.45-1.3.36a |
$3$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$36$ |
$22$ |
$47$ |
3.1.12.22a1.45 |
$[\frac{19}{8}, \frac{10}{3}]$ |
$[17]$ |
$\langle\frac{34}{3}\rangle$ |
$(17)$ |
$x^3 + (b_{50} \pi^{17} + b_{47} \pi^{16} + b_{44} \pi^{15} + b_{41} \pi^{14} + b_{38} \pi^{13} + b_{35} \pi^{12}) x^2 + (b_{49} \pi^{17} + b_{46} \pi^{16} + b_{43} \pi^{15} + b_{40} \pi^{14} + b_{37} \pi^{13} + a_{34} \pi^{12}) x + c_{51} \pi^{18} + \pi$ |
$3$ |
$0$ |
$354294$ |
$354294$ |
$0$ |
$0\%$ |
$1$ |