Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.4.8.88b |
$2$ |
$32$ |
$1$ |
$32$ |
$4$ |
$1$ |
$4$ |
$8$ |
$1$ |
$8$ |
$88$ |
$0$ |
$88$ |
$\Q_{2}$ |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[1, \frac{7}{3}, \frac{7}{3}]$ |
$\langle\frac{1}{2}, \frac{17}{12}, \frac{15}{8}\rangle$ |
$(1, \frac{11}{3}, \frac{11}{3})$ |
$x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + 2 a_{4} x^4 + 8 b_{18} x^2 + 8 b_{17} x + 4 c_{8} + 2$ |
$8$ |
$0$ |
$921600$ |
$230400$ |
$0$ |
$0\%$ |
$2$ |
2.2.1.0a1.1-2.8.44b |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$2$ |
$4$ |
$8$ |
$1$ |
$8$ |
$44$ |
$0$ |
$44$ |
$\Q_{2}(\sqrt{5})$ |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[1, \frac{7}{3}, \frac{7}{3}]$ |
$\langle\frac{1}{2}, \frac{17}{12}, \frac{15}{8}\rangle$ |
$(1, \frac{11}{3}, \frac{11}{3})$ |
$x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + 2 a_{4} x^4 + 8 b_{18} x^2 + 8 b_{17} x + 4 c_{8} + 2$ |
$4$ |
$0$ |
$921600$ |
$230400$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.2a1.1-4.4.56a |
$2$ |
$16$ |
$2$ |
$32$ |
$4$ |
$1$ |
$4$ |
$4$ |
$2$ |
$8$ |
$56$ |
$2$ |
$60$ |
$\Q_{2}(\sqrt{-1})$ |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$4$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.2.2a1.2-4.4.56a |
$2$ |
$16$ |
$2$ |
$32$ |
$4$ |
$1$ |
$4$ |
$4$ |
$2$ |
$8$ |
$56$ |
$2$ |
$60$ |
$\Q_{2}(\sqrt{-5})$ |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$4$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.4.1.0a1.1-1.8.22b |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$4$ |
$4$ |
$8$ |
$1$ |
$8$ |
$22$ |
$0$ |
$22$ |
2.4.1.0a1.1 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[1, \frac{7}{3}, \frac{7}{3}]$ |
$\langle\frac{1}{2}, \frac{17}{12}, \frac{15}{8}\rangle$ |
$(1, \frac{11}{3}, \frac{11}{3})$ |
$x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + 2 a_{4} x^4 + 8 b_{18} x^2 + 8 b_{17} x + 4 c_{8} + 2$ |
$2$ |
$0$ |
$921600$ |
$230400$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.4a1.1-2.4.28a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$2$ |
$4$ |
$4$ |
$2$ |
$8$ |
$28$ |
$4$ |
$30$ |
2.2.2.4a1.1 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$2$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.2.2.4a1.2-2.4.28a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$2$ |
$4$ |
$4$ |
$2$ |
$8$ |
$28$ |
$4$ |
$30$ |
2.2.2.4a1.2 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$2$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.2.2.4a2.1-2.4.28a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$2$ |
$4$ |
$4$ |
$2$ |
$8$ |
$28$ |
$4$ |
$30$ |
2.2.2.4a2.1 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$2$ |
$0$ |
$61440$ |
$15360$ |
$0$ |
$0\%$ |
$1$ |
2.2.2.4a2.2-2.4.28a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$2$ |
$4$ |
$4$ |
$2$ |
$8$ |
$28$ |
$4$ |
$30$ |
2.2.2.4a2.2 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$2$ |
$0$ |
$61440$ |
$15360$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.8a1.1-1.4.14a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$14$ |
$8$ |
$15$ |
2.4.2.8a1.1 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.8a1.2-1.4.14a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$14$ |
$8$ |
$15$ |
2.4.2.8a1.2 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.8a2.1-1.4.14a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$14$ |
$8$ |
$15$ |
2.4.2.8a2.1 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$0$ |
$61440$ |
$30720$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.8a2.2-1.4.14a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$14$ |
$8$ |
$15$ |
2.4.2.8a2.2 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$0$ |
$61440$ |
$30720$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.8a3.1-1.4.14a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$14$ |
$8$ |
$15$ |
2.4.2.8a3.1 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$0$ |
$61440$ |
$15360$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.8a3.2-1.4.14a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$14$ |
$8$ |
$15$ |
2.4.2.8a3.2 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$0$ |
$61440$ |
$15360$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.8a4.1-1.4.14a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$14$ |
$8$ |
$15$ |
2.4.2.8a4.1 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$0$ |
$61440$ |
$30720$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.8a4.2-1.4.14a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$14$ |
$8$ |
$15$ |
2.4.2.8a4.2 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$0$ |
$61440$ |
$30720$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.8a5.1-1.4.14a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$14$ |
$8$ |
$15$ |
2.4.2.8a5.1 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$0$ |
$61440$ |
$30720$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.8a5.2-1.4.14a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$14$ |
$8$ |
$15$ |
2.4.2.8a5.2 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[\frac{11}{3}, \frac{11}{3}]$ |
$\langle\frac{11}{6}, \frac{11}{4}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ |
$1$ |
$0$ |
$61440$ |
$30720$ |
$0$ |
$0\%$ |
$1$ |
2.1.8.22b1.1-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$1$ |
$4$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$60$ |
2.1.8.22b1.1 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/4$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22b1.2-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$1$ |
$4$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$60$ |
2.1.8.22b1.2 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/4$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22b1.3-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$1$ |
$4$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$60$ |
2.1.8.22b1.3 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/4$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22b1.4-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$1$ |
$4$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$60$ |
2.1.8.22b1.4 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/4$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22b1.5-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$1$ |
$4$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$60$ |
2.1.8.22b1.5 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/4$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22b1.6-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$1$ |
$4$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$60$ |
2.1.8.22b1.6 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/4$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22b1.7-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$1$ |
$4$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$60$ |
2.1.8.22b1.7 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/4$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22b1.8-4.1.0a |
$2$ |
$4$ |
$8$ |
$32$ |
$4$ |
$1$ |
$4$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$60$ |
2.1.8.22b1.8 |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/4$ |
$0$ |
$0\%$ |
$0$ |