| Label | $p$ | $n$ | $n_0$ | $n_{\mathrm{abs}}$ | $f$ | $f_0$ | $f_{\mathrm{abs}}$ | $e$ | $e_0$ | $e_{\mathrm{abs}}$ | $c$ | $c_0$ | $c_{\mathrm{abs}}$ | Base | Abs. Artin slopes | Swan slopes | Means | Rams | Generic poly | Ambiguity | Field count | Mass | Mass (absolute) | Mass stored | Mass found | Wild segments | 
      
      
              | 2.1.24.52i | $2$ | $24$ | $1$ | $24$ | $1$ | $1$ | $1$ | $24$ | $1$ | $24$ | $52$ | $0$ | $52$ | $\Q_{2}$ | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[\frac{1}{3}, \frac{2}{3}, 2]$ | $\langle\frac{1}{6}, \frac{5}{12}, \frac{29}{24}\rangle$ | $(1, 3, 19)$ | $x^{24} + 4 b_{47} x^{23} + 4 b_{45} x^{21} + 4 b_{43} x^{19} + 4 b_{41} x^{17} + 2 c_{16} x^{16} + 4 b_{39} x^{15} + 2 b_{14} x^{14} + 4 b_{37} x^{13} + 4 b_{35} x^{11} + 2 a_{10} x^{10} + 4 b_{33} x^9 + 2 c_{8} x^8 + 4 b_{31} x^7 + 4 a_{29} x^5 + 2 a_{4} x^4 + 8 c_{48} + 2$ | $8$ | $0$ | $1024$ | $1024$ | $0$ | $0\%$ | $3$ | 
      
              | 2.1.2.3a1.1-1.12.16b | $2$ | $12$ | $2$ | $24$ | $1$ | $1$ | $1$ | $12$ | $2$ | $24$ | $16$ | $3$ | $18$ | $\Q_{2}(\sqrt{-2})$ | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[\frac{1}{3}, \frac{2}{3}]$ | $\langle\frac{1}{6}, \frac{5}{12}\rangle$ | $(1, 3)$ | $x^{12} + c_{8} \pi x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + c_{4} \pi x^4 + a_{2} \pi x^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.2.3a1.2-1.12.16b | $2$ | $12$ | $2$ | $24$ | $1$ | $1$ | $1$ | $12$ | $2$ | $24$ | $16$ | $3$ | $18$ | $\Q_{2}(\sqrt{-2\cdot 5})$ | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[\frac{1}{3}, \frac{2}{3}]$ | $\langle\frac{1}{6}, \frac{5}{12}\rangle$ | $(1, 3)$ | $x^{12} + c_{8} \pi x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + c_{4} \pi x^4 + a_{2} \pi x^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.2.3a1.3-1.12.16b | $2$ | $12$ | $2$ | $24$ | $1$ | $1$ | $1$ | $12$ | $2$ | $24$ | $16$ | $3$ | $18$ | $\Q_{2}(\sqrt{2})$ | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[\frac{1}{3}, \frac{2}{3}]$ | $\langle\frac{1}{6}, \frac{5}{12}\rangle$ | $(1, 3)$ | $x^{12} + c_{8} \pi x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + c_{4} \pi x^4 + a_{2} \pi x^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.2.3a1.4-1.12.16b | $2$ | $12$ | $2$ | $24$ | $1$ | $1$ | $1$ | $12$ | $2$ | $24$ | $16$ | $3$ | $18$ | $\Q_{2}(\sqrt{2\cdot 5})$ | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[\frac{1}{3}, \frac{2}{3}]$ | $\langle\frac{1}{6}, \frac{5}{12}\rangle$ | $(1, 3)$ | $x^{12} + c_{8} \pi x^8 + b_{7} \pi x^7 + a_{5} \pi x^5 + c_{4} \pi x^4 + a_{2} \pi x^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.3.2a1.1-1.8.36i | $2$ | $8$ | $3$ | $24$ | $1$ | $1$ | $1$ | $8$ | $3$ | $24$ | $36$ | $2$ | $36$ | 2.1.3.2a1.1 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2, 6]$ | $\langle\frac{1}{2}, \frac{5}{4}, \frac{29}{8}\rangle$ | $(1, 3, 19)$ | $x^8 + (b_{47} \pi^6 + b_{39} \pi^5 + b_{31} \pi^4) x^7 + b_{14} \pi^2 x^6 + (b_{45} \pi^6 + b_{37} \pi^5 + a_{29} \pi^4) x^5 + a_{4} \pi x^4 + (b_{43} \pi^6 + b_{35} \pi^5) x^3 + a_{10} \pi^2 x^2 + (b_{41} \pi^6 + b_{33} \pi^5) x + c_{48} \pi^7 + c_{16} \pi^3 + c_{8} \pi^2 + \pi$ | $8$ | $0$ | $1024$ | $1024$ | $0$ | $0\%$ | $3$ | 
      
              | 2.1.6.6a1.1-1.4.28c | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $28$ | $6$ | $29$ | 2.1.6.6a1.1 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3, 11]$ | $\langle\frac{3}{2}, \frac{25}{4}\rangle$ | $(3, 19)$ | $x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + b_{27} \pi^7) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8 + a_{25} \pi^7) x + c_{44} \pi^{12} + c_{12} \pi^4 + \pi$ | $4$ | $0$ | $1024$ | $512$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.6a1.2-1.4.28c | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $28$ | $6$ | $29$ | 2.1.6.6a1.2 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3, 11]$ | $\langle\frac{3}{2}, \frac{25}{4}\rangle$ | $(3, 19)$ | $x^4 + (b_{43} \pi^{11} + b_{39} \pi^{10} + b_{35} \pi^9 + b_{31} \pi^8 + b_{27} \pi^7) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{41} \pi^{11} + b_{37} \pi^{10} + b_{33} \pi^9 + b_{29} \pi^8 + a_{25} \pi^7) x + c_{44} \pi^{12} + c_{12} \pi^4 + \pi$ | $4$ | $0$ | $1024$ | $512$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.1-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.1 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.2-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.2 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.3-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.3 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.4-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.4 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.5-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.5 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.6-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.6 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.7-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.7 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.8-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.8 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.9-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.9 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.10-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.10 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.11-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.11 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.12-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.12 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.13-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.13 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.14-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.14 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.15-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.15 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.6.11a1.16-1.4.8b | $2$ | $4$ | $6$ | $24$ | $1$ | $1$ | $1$ | $4$ | $6$ | $24$ | $8$ | $11$ | $14$ | 2.1.6.11a1.16 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[1, 2]$ | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ | $(1, 3)$ | $x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ | $4$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $2$ | 
      
              | 2.1.12.16b1.1-1.2.20a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $20$ | $16$ | $25$ | 2.1.12.16b1.1 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[19]$ | $\langle\frac{19}{2}\rangle$ | $(19)$ | $x^2 + (b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + a_{19} \pi^{10}) x + c_{38} \pi^{20} + \pi$ | $2$ | $0$ | $512$ | $256$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.16b1.2-1.2.20a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $20$ | $16$ | $25$ | 2.1.12.16b1.2 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[19]$ | $\langle\frac{19}{2}\rangle$ | $(19)$ | $x^2 + (b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + a_{19} \pi^{10}) x + c_{38} \pi^{20} + \pi$ | $2$ | $0$ | $512$ | $128$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.16b1.3-1.2.20a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $20$ | $16$ | $25$ | 2.1.12.16b1.3 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[19]$ | $\langle\frac{19}{2}\rangle$ | $(19)$ | $x^2 + (b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + a_{19} \pi^{10}) x + c_{38} \pi^{20} + \pi$ | $2$ | $0$ | $512$ | $128$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.16b1.4-1.2.20a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $20$ | $16$ | $25$ | 2.1.12.16b1.4 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[19]$ | $\langle\frac{19}{2}\rangle$ | $(19)$ | $x^2 + (b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + a_{19} \pi^{10}) x + c_{38} \pi^{20} + \pi$ | $2$ | $0$ | $512$ | $256$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.16b1.5-1.2.20a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $20$ | $16$ | $25$ | 2.1.12.16b1.5 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[19]$ | $\langle\frac{19}{2}\rangle$ | $(19)$ | $x^2 + (b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + a_{19} \pi^{10}) x + c_{38} \pi^{20} + \pi$ | $2$ | $0$ | $512$ | $128$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.16b1.6-1.2.20a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $20$ | $16$ | $25$ | 2.1.12.16b1.6 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[19]$ | $\langle\frac{19}{2}\rangle$ | $(19)$ | $x^2 + (b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + a_{19} \pi^{10}) x + c_{38} \pi^{20} + \pi$ | $2$ | $0$ | $512$ | $128$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.1-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.1 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1/2$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.2-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.2 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1/2$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.3-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.3 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.4-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.4 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1/2$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.5-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.5 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1/2$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.6-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.6 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.7-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.7 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1/2$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.8-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.8 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1/2$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.9-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.9 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.10-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.10 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1/2$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.11-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.11 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1/2$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.12-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.12 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.13-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.13 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.14-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.14 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.15-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.15 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.16-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.16 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.17-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.17 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.18-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.18 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.19-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.19 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ | 
      
              | 2.1.12.24b1.20-1.2.4a | $2$ | $2$ | $12$ | $24$ | $1$ | $1$ | $1$ | $2$ | $12$ | $24$ | $4$ | $24$ | $17$ | 2.1.12.24b1.20 | $[\frac{4}{3}, \frac{5}{3}, 3]$ | $[3]$ | $\langle\frac{3}{2}\rangle$ | $(3)$ | $x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ | $2$ | $0$ | $2$ | $1$ | $0$ | $0\%$ | $1$ |