Learn more

Refine search


Results (1-50 of 64 matches)

Next   displayed columns for results
Label Polynomial $p$ $f$ $e$ $c$ Galois group $u$ $t$ Visible Artin slopes Visible Swan slopes Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Unram. Ext. Eisen. Poly. Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.2.8.56a1.39 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 24 t x^{4} + 8 x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.40 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 24 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + 8 x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.41 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 24 t x^{4} + 16 t x^{3} + 8 x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.42 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 24 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + 16 t x^{3} + 8 x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.53 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 24 t x^{4} + \left(16 t + 16\right) x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.54 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 24 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + \left(16 t + 16\right) x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.55 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 24 t x^{4} + 16 t x^{3} + \left(16 t + 16\right) x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.56 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 24 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + 16 t x^{3} + \left(16 t + 16\right) x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.85 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + 16 t x^{4} + 8 t x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.86 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 16 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.87 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + 16 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.88 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 16 x ( x^{2} + x + 1 )^{4} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + 16 t x^{3} + 8 t x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.91 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 16 t x^{3} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.92 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.93 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 24 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + \left(16 t + 16\right) x^{3} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.94 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + \left(16 x + 24\right) ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 16 x^{3} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.95 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 16 t x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.96 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.97 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 24 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + \left(16 t + 16\right) x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.98 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + \left(16 x + 24\right) ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 16 x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.99 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.100 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 16 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + 16 t x^{4} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.101 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + 16 t x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.102 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 16 x ( x^{2} + x + 1 )^{4} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + 16 t x^{4} + 16 t x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.161 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + \left(16 t + 16\right) x^{3} + 8 x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.162 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + 16 t x^{3} + 8 x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.163 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + \left(16 t + 16\right) x^{3} + 8 x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.164 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + 16 t x^{3} + 8 x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.167 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + 16 t x^{3} + 8 x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.168 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + \left(16 t + 16\right) x^{3} + 8 x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.169 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + 16 t x^{3} + 8 x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.170 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + 8 t x^{4} + \left(16 t + 16\right) x^{3} + 8 x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.731 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + 16 t x^{3} + 8 x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.732 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + \left(24 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + \left(24 t + 4\right) x^{4} + 16 t x^{3} + 8 x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.733 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + 8 x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.734 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + \left(24 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + \left(24 t + 4\right) x^{4} + 8 x^{2} + 16 t x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.735 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + 16 t x^{3} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.736 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + \left(16 t + 16\right) x^{3} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.737 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + 16 t x^{3} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.738 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + \left(16 t + 16\right) x^{3} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.741 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + \left(24 t + 4\right) x^{4} + \left(16 t + 16\right) x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.742 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(24 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + \left(16 t + 16\right) x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.743 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + \left(24 t + 4\right) x^{4} + 16 t x^{3} + \left(16 t + 16\right) x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.744 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(24 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 x ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]^{4}$ $[2,2,2,\frac{7}{2}]^{2}$ $[1,1,1,\frac{5}{2}]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + 16 t x^{3} + \left(16 t + 16\right) x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.747 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + \left(16 t + 16\right) x^{3} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.748 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + 16 t x^{3} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.749 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + \left(16 t + 16\right) x^{3} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.750 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + 16 t x^{3} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.795 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + 16 x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.796 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{4} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $C_2^4.(C_4\times D_4)$ (as 16T884) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,3,4]^{2}$ $[1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + \left(8 t + 4\right) x^{4} + \left(16 t + 16\right) x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
Next   displayed columns for results