Label |
$n$ |
Polynomial |
$p$ |
$f$ |
$e$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible Artin slopes |
Visible Swan slopes |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
$\#\Aut(K/\Q_p)$ |
Unram. Ext. |
Eisen. Poly. |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.2.8.56a3.793 |
$16$ |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + 4 t x^{4} + 16 x^{3} + 8 t x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.794 |
$16$ |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 16\right) x^{4} + 16 x^{3} + 8 t x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.795 |
$16$ |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + 4 t x^{4} + 8 t x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.796 |
$16$ |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 16\right) x^{4} + 8 t x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.801 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 4 t x^{6} + 8 x^{5} + 4 t x^{4} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.802 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 4 t x^{6} + 8 x^{5} + \left(4 t + 16\right) x^{4} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.803 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 4 t x^{6} + 8 x^{5} + 4 t x^{4} + 16 x^{3} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.804 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 4 t x^{6} + 8 x^{5} + \left(4 t + 16\right) x^{4} + 16 x^{3} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.805 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + 4 t x^{4} + 16 x^{3} + 8 t x^{2} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.806 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 16\right) x^{4} + 16 x^{3} + 8 t x^{2} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.807 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + 4 t x^{4} + 8 t x^{2} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.808 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 16\right) x^{4} + 8 t x^{2} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.833 |
$16$ |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 8\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 16 x^{3} + 8 t x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.834 |
$16$ |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 24\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 16 x^{3} + 8 t x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.835 |
$16$ |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 8\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 8 t x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.836 |
$16$ |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 24\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 8 t x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.841 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 8\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.842 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 24\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.843 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 8\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 16 x^{3} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.844 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 24\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 16 x^{3} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.845 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 8\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 16 x^{3} + 8 t x^{2} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.846 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 24\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 16 x^{3} + 8 t x^{2} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.847 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 8\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 8 t x^{2} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.848 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 24\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 8 t x^{2} + 16 t x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.849 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 16 x^{3} + 8 t x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.850 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 16 x^{3} + 8 t x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.851 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 8 t x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.852 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 8 t x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.873 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 8\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 16\right) x^{4} + 16 x^{3} + 8 t x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.874 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 24\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + 4 t x^{4} + 16 x^{3} + 8 t x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.875 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 8\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 16\right) x^{4} + 8 t x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.876 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 24\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + 4 t x^{4} + 8 t x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.929 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 16\right) x^{4} + \left(8 t + 8\right) x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.930 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + 4 t x^{4} + \left(8 t + 8\right) x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.931 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 16\right) x^{4} + 16 x^{3} + \left(8 t + 8\right) x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.932 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + 4 t x^{4} + 16 x^{3} + \left(8 t + 8\right) x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.969 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 8\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + \left(8 t + 8\right) x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.970 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 24\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + \left(8 t + 8\right) x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.971 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 8\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 16 x^{3} + \left(8 t + 8\right) x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.972 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 24\right) ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 16 x^{3} + \left(8 t + 8\right) x^{2} + 16 x + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.977 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 t x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 16 x^{3} + 8 x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.978 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 t x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 16 x^{3} + 8 x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.979 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 t x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 8 x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.980 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 t x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 8 x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.981 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + \left(8 t + 8\right) x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.982 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + \left(8 t + 8\right) x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.983 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 16 x^{3} + \left(8 t + 8\right) x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.984 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 16 x^{3} + \left(8 t + 8\right) x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.985 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 24\right) x^{4} + 16 x^{3} + \left(8 t + 8\right) x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a3.986 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 16\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_4^3.(C_2^2\times C_4)$ (as 16T1186) |
$4$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]_{2}$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]_{2}$ |
$2$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 t x^{6} + 8 x^{5} + \left(4 t + 8\right) x^{4} + 16 x^{3} + \left(8 t + 8\right) x^{2} + 8 t + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |