Learn more

Refine search


Results (1-50 of 128 matches)

Next   displayed columns for results
Label Polynomial $p$ $f$ $e$ $c$ Galois group $u$ $t$ Visible Artin slopes Visible Swan slopes Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Unram. Ext. Eisen. Poly. Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.2.8.56a1.353 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.354 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.355 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.356 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.357 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 16 t x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.358 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 16 t x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.359 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.360 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.396 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.397 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 4 t x^{4} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.398 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 16 t x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.399 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 4 t x^{4} + 16 t x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.400 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.401 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 4 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.402 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.403 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 4 t x^{4} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.498 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.499 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 4 t x^{4} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.500 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 16 t x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.501 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 4 t x^{4} + 16 t x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.502 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 4 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.503 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.504 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 4 t x^{4} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.505 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.517 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.518 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.519 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.520 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.521 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 16 t x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.522 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 16 t x^{3} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.523 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.524 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 8 t x^{2} + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.569 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]_{2}$ $[1,1,1,2,3]_{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.570 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]_{2}$ $[1,1,1,2,3]_{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 4 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.571 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]_{2}$ $[1,1,1,2,3]_{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 8 t x^{2} + 16 x + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.572 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]_{2}$ $[1,1,1,2,3]_{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 4 t x^{4} + 8 t x^{2} + 16 x + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.601 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 16 t x^{3} + 8 t x^{2} + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.602 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 16 t x^{3} + 8 t x^{2} + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.603 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 8 t x^{2} + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.604 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 8 t x^{2} + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.661 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.662 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.663 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 8 t x^{2} + 16 x + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.664 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]^{2}$ $[1,1,1,2,3]^{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 8 t x^{2} + 16 x + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.665 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]_{2}$ $[1,1,1,2,3]_{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 8 t x^{2} + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.666 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]_{2}$ $[1,1,1,2,3]_{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 8 t x^{2} + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.667 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]_{2}$ $[1,1,1,2,3]_{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 16 t x^{3} + 8 t x^{2} + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.668 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 20 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]_{2}$ $[1,1,1,2,3]_{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 28 t x^{4} + 16 t x^{3} + 8 t x^{2} + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.685 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]_{2}$ $[1,1,1,2,3]_{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 4 t x^{4} + 16 t x^{3} + 8 t x^{2} + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56a1.686 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $2$ $2$ $8$ $56$ $(C_2\times C_4^3).D_4$ (as 16T1108) $4$ $1$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2,\frac{5}{2},\frac{7}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, 4, \frac{9}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},3,\frac{7}{2}]^{4}$ $[2,2,2,3,4]_{2}$ $[1,1,1,2,3]_{2}$ $t^{2} + t + 1$ $x^{8} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 16 t x^{3} + 8 t x^{2} + 8 t + 2$ $[21, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
Next   displayed columns for results