| Label |
$n$ |
Polynomial |
$p$ |
$f$ |
$e$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible Artin slopes |
Visible Swan slopes |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
$\#\Aut(K/\Q_p)$ |
Unram. Ext. |
Eisen. Poly. |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.42k1.4 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.5 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.6 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.7 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.9 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_4^2.Q_{16}$ (as 16T697) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.10 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_4^2.Q_{16}$ (as 16T697) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.15 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.16 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.17 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.18 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.19 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_4^2.Q_{16}$ (as 16T697) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.20 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_4^2.Q_{16}$ (as 16T697) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.22 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.23 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.24 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.31 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.32 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.33 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.34 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.40 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.43 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.44 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.45 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.46 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.49 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_4^2.Q_{16}$ (as 16T697) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.50 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_4^2.Q_{16}$ (as 16T697) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.54 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.55 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.56 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.57 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_8^2:C_2^2$ (as 16T568) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.59 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_4^2.Q_{16}$ (as 16T697) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.60 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_4^2.Q_{16}$ (as 16T697) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.63 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.64 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.70 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.71 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.72 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.74 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.79 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.80 |
$16$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |