Learn more

Note: Search results may be incomplete due to uncomputed quantities: Hidden content (1054941 objects)

Refine search


Results (40 matches)

  displayed columns for results
Label Polynomial $p$ $f$ $e$ $c$ Galois group $u$ $t$ Visible Artin slopes Visible Swan slopes Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Unram. Ext. Eisen. Poly. Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.42k1.4 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.5 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.6 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.7 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.9 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_4^2.Q_{16}$ (as 16T697) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.10 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_4^2.Q_{16}$ (as 16T697) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.15 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.16 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.17 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.18 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.19 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_4^2.Q_{16}$ (as 16T697) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.20 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_4^2.Q_{16}$ (as 16T697) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.22 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.23 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.24 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.31 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.32 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.33 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.34 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.40 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.43 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.44 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.45 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.46 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.49 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_4^2.Q_{16}$ (as 16T697) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.50 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_4^2.Q_{16}$ (as 16T697) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.54 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.55 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.56 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.57 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_8^2:C_2^2$ (as 16T568) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.59 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_4^2.Q_{16}$ (as 16T697) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.60 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_4^2.Q_{16}$ (as 16T697) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.63 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.64 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.70 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.71 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.72 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.74 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.79 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.80 $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^4.\SD_{16}$ (as 16T673) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[3,3]^{4}$ $[2,2]^{4}$ $t + 1$ $x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
  displayed columns for results