Learn more

Note: Search results may be incomplete due to uncomputed quantities: Hidden content (1054941 objects)

Refine search


Results (32 matches)

  displayed columns for results
Label Polynomial $p$ $f$ $e$ $c$ Galois group $u$ $t$ Visible Artin slopes Visible Swan slopes Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Unram. Ext. Eisen. Poly. Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.42k1.1 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.2 $x^{16} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.3 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.8 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.11 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.12 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.13 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.14 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 8 x + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.25 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.26 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.27 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.28 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.35 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.36 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.37 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.38 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 9, 25, 41]$
2.1.16.42k1.41 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.42 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.47 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.48 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.51 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.52 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.53 $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 8 x + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.58 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1264) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.65 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.66 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.67 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.68 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.75 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.76 $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.77 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
2.1.16.42k1.78 $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1250) $4$ $1$ $[2, 2, \frac{5}{2}, \frac{13}{4}]$ $[1,1,\frac{3}{2},\frac{9}{4}]$ $[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ $[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ $[2,2,3,3]_{4}$ $[1,1,2,2]_{4}$ $t + 1$ $x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ $[27, 18, 12, 12, 0]$ $[2, 1, 1]$ $z^{12} + 1,z^2 + 1,z + 1$ $[1, 3, 6, 12, 32]$
  displayed columns for results