| Label |
$n$ |
Polynomial |
$p$ |
$f$ |
$e$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible Artin slopes |
Visible Swan slopes |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
$\#\Aut(K/\Q_p)$ |
Unram. Ext. |
Eisen. Poly. |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.42k1.1 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.2 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.3 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.8 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.11 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.12 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.13 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.14 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 8 x + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.25 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.26 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.27 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.28 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.35 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.36 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.37 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.38 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 25, 41]$ |
| 2.1.16.42k1.41 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.42 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.47 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.48 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.51 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.52 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.53 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.58 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.65 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.66 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.67 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.68 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.75 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.76 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.77 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.78 |
$16$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$4$ |
$1$ |
$[2, 2, \frac{5}{2}, \frac{13}{4}]$ |
$[1,1,\frac{3}{2},\frac{9}{4}]$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |