Learn more

Note: Search results may be incomplete due to uncomputed quantities: Hidden content (1054941 objects)

Refine search


Results (32 matches)

  displayed columns for results
Label Polynomial $p$ $f$ $e$ $c$ Galois group $u$ $t$ Visible Artin slopes Visible Swan slopes Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Unram. Ext. Eisen. Poly. Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.42b4.13 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.14 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.15 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.16 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.17 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 2$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.18 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 2$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.19 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.20 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.33 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.34 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.35 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.36 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 2$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.37 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 2$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.38 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 2$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.39 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.40 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 23, 39]$
2.1.16.42b4.85 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.86 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.87 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.88 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.89 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 6$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.90 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 6$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.91 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.92 $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.105 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.106 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.107 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.108 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 6$ $2$ $1$ $16$ $42$ $C_2^6.\SD_{16}$ (as 16T1284) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.109 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 6$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.110 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 6$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.111 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.42b4.112 $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ $2$ $1$ $16$ $42$ $(D_4\times C_2^3).Q_{16}$ (as 16T1255) $4$ $1$ $[2, 2, 2, \frac{7}{2}]$ $[1,1,1,\frac{5}{2}]$ $[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ $[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ $[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ $[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ $t + 1$ $x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ $[27, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
  displayed columns for results