Label |
$n$ |
Polynomial |
$p$ |
$f$ |
$e$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible Artin slopes |
Visible Swan slopes |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
$\#\Aut(K/\Q_p)$ |
Unram. Ext. |
Eisen. Poly. |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.16.42b4.13 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.14 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.15 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.16 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.17 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.18 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.19 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.20 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.33 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.34 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.35 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.36 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.37 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.38 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.39 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.40 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.85 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.86 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.87 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.88 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.89 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.90 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.91 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.92 |
$16$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.105 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.106 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.107 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.108 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.109 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.110 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.111 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |
2.1.16.42b4.112 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$2$ |
$1$ |
$16$ |
$42$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$4$ |
$1$ |
$[2, 2, 2, \frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$2$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 6$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 14, 32]$ |