Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.1.12.25a1.89-2.1.0a |
$2$ |
$2$ |
$12$ |
$24$ |
$2$ |
$1$ |
$2$ |
$1$ |
$12$ |
$12$ |
$0$ |
$25$ |
$28$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$0$ |
$1$ |
$1/4$ |
$0$ |
$0\%$ |
$0$ |
2.1.12.25a1.89-1.2.2a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$2$ |
$25$ |
$16$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{4}{3}, \frac{19}{6}]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$2$ |
$0$ |
$1$ |
$1/2$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.4a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$4$ |
$25$ |
$18$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{5}{3}, \frac{19}{6}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$0$ |
$2$ |
$1$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.6a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$6$ |
$25$ |
$20$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, 2, \frac{19}{6}]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$2$ |
$0$ |
$4$ |
$2$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.8a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$8$ |
$25$ |
$22$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{7}{3}, \frac{19}{6}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$2$ |
$0$ |
$8$ |
$4$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.10a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$10$ |
$25$ |
$24$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{8}{3}, \frac{19}{6}]$ |
$[9]$ |
$\langle\frac{9}{2}\rangle$ |
$(9)$ |
$x^2 + (b_{17} \pi^9 + b_{15} \pi^8 + b_{13} \pi^7 + b_{11} \pi^6 + a_{9} \pi^5) x + c_{18} \pi^{10} + \pi$ |
$2$ |
$0$ |
$16$ |
$8$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.12a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$12$ |
$25$ |
$26$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, 3, \frac{19}{6}]$ |
$[11]$ |
$\langle\frac{11}{2}\rangle$ |
$(11)$ |
$x^2 + (b_{21} \pi^{11} + b_{19} \pi^{10} + b_{17} \pi^9 + b_{15} \pi^8 + b_{13} \pi^7 + a_{11} \pi^6) x + c_{22} \pi^{12} + \pi$ |
$2$ |
$0$ |
$32$ |
$16$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.14a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$14$ |
$25$ |
$28$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{19}{6}, \frac{13}{4}]$ |
$[13]$ |
$\langle\frac{13}{2}\rangle$ |
$(13)$ |
$x^2 + (b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + b_{19} \pi^{10} + b_{17} \pi^9 + b_{15} \pi^8 + a_{13} \pi^7) x + c_{26} \pi^{14} + \pi$ |
$2$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.16a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$16$ |
$25$ |
$30$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{19}{6}, \frac{41}{12}]$ |
$[15]$ |
$\langle\frac{15}{2}\rangle$ |
$(15)$ |
$x^2 + (b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + b_{19} \pi^{10} + b_{17} \pi^9 + a_{15} \pi^8) x + c_{30} \pi^{16} + \pi$ |
$2$ |
$0$ |
$128$ |
$64$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.18a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$18$ |
$25$ |
$32$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{19}{6}, \frac{43}{12}]$ |
$[17]$ |
$\langle\frac{17}{2}\rangle$ |
$(17)$ |
$x^2 + (b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + b_{19} \pi^{10} + a_{17} \pi^9) x + c_{34} \pi^{18} + \pi$ |
$2$ |
$0$ |
$256$ |
$128$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.20a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$20$ |
$25$ |
$34$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{19}{6}, \frac{15}{4}]$ |
$[19]$ |
$\langle\frac{19}{2}\rangle$ |
$(19)$ |
$x^2 + (b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + a_{19} \pi^{10}) x + c_{38} \pi^{20} + \pi$ |
$2$ |
$0$ |
$512$ |
$256$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.22a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$22$ |
$25$ |
$36$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{19}{6}, \frac{47}{12}]$ |
$[21]$ |
$\langle\frac{21}{2}\rangle$ |
$(21)$ |
$x^2 + (b_{41} \pi^{21} + b_{39} \pi^{20} + b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + b_{23} \pi^{12} + a_{21} \pi^{11}) x + c_{42} \pi^{22} + \pi$ |
$2$ |
$0$ |
$1024$ |
$512$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.24a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$24$ |
$25$ |
$38$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{19}{6}, \frac{49}{12}]$ |
$[23]$ |
$\langle\frac{23}{2}\rangle$ |
$(23)$ |
$x^2 + (b_{45} \pi^{23} + b_{43} \pi^{22} + b_{41} \pi^{21} + b_{39} \pi^{20} + b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13} + a_{23} \pi^{12}) x + c_{46} \pi^{24} + \pi$ |
$2$ |
$0$ |
$2048$ |
$1024$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-1.2.25a |
$2$ |
$2$ |
$12$ |
$24$ |
$1$ |
$1$ |
$1$ |
$2$ |
$12$ |
$24$ |
$25$ |
$25$ |
$39$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{19}{6}, \frac{25}{6}]$ |
$[24]$ |
$\langle12\rangle$ |
$(24)$ |
$x^2 + (b_{47} \pi^{24} + b_{45} \pi^{23} + b_{43} \pi^{22} + b_{41} \pi^{21} + b_{39} \pi^{20} + b_{37} \pi^{19} + b_{35} \pi^{18} + b_{33} \pi^{17} + b_{31} \pi^{16} + b_{29} \pi^{15} + b_{27} \pi^{14} + b_{25} \pi^{13}) x + c_{48} \pi^{25} + \pi$ |
$2$ |
$0$ |
$4096$ |
$2048$ |
$0$ |
$0\%$ |
$1$ |
2.1.12.25a1.89-3.1.0a |
$2$ |
$3$ |
$12$ |
$36$ |
$3$ |
$1$ |
$3$ |
$1$ |
$12$ |
$12$ |
$0$ |
$25$ |
$42$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$3$ |
$0$ |
$1$ |
$1/6$ |
$0$ |
$0\%$ |
$0$ |
2.1.12.25a1.89-1.3.2a |
$2$ |
$3$ |
$12$ |
$36$ |
$1$ |
$1$ |
$1$ |
$3$ |
$12$ |
$36$ |
$2$ |
$25$ |
$16$ |
2.1.12.25a1.89 |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^3 + \pi$ |
$1$ |
$0$ |
$1$ |
$1/2$ |
$0$ |
$0\%$ |
$0$ |