Defining polynomial
\(x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232\)
|
Invariants
Base field: | $\Q_{89}$ |
Degree $d$: | $4$ |
Ramification exponent $e$: | $2$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $2$ |
Discriminant root field: | $\Q_{89}$ |
Root number: | $-1$ |
$\card{ \Gal(K/\Q_{ 89 }) }$: | $4$ |
This field is Galois and abelian over $\Q_{89}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{89}(\sqrt{3})$, $\Q_{89}(\sqrt{89})$, $\Q_{89}(\sqrt{89\cdot 3})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{89}(\sqrt{3})$ $\cong \Q_{89}(t)$ where $t$ is a root of
\( x^{2} + 82 x + 3 \)
|
Relative Eisenstein polynomial: |
\( x^{2} + 6052 x + 89 \)
$\ \in\Q_{89}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_2^2$ (as 4T2) |
Inertia group: | Intransitive group isomorphic to $C_2$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $2$ |
Tame degree: | $2$ |
Wild slopes: | None |
Galois mean slope: | $1/2$ |
Galois splitting model: |
$x^{4} + 979 x^{2} + 285156$
|