Properties

Label 89.4.2.1
Base \(\Q_{89}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(2\)
Galois group $C_2^2$ (as 4T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232\) Copy content Toggle raw display

Invariants

Base field: $\Q_{89}$
Degree $d$: $4$
Ramification exponent $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{89}$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 89 }) }$: $4$
This field is Galois and abelian over $\Q_{89}.$
Visible slopes:None

Intermediate fields

$\Q_{89}(\sqrt{3})$, $\Q_{89}(\sqrt{89})$, $\Q_{89}(\sqrt{89\cdot 3})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{89}(\sqrt{3})$ $\cong \Q_{89}(t)$ where $t$ is a root of \( x^{2} + 82 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 6052 x + 89 \) $\ \in\Q_{89}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_2^2$ (as 4T2)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model: $x^{4} + 979 x^{2} + 285156$ Copy content Toggle raw display